Amit Gefen (Ed.)

Bioengineering Research of Chronic Wounds

A Multidisciplinary Study Approach
Preface

I am delighted to launch the Book Series Studies in Mechanobiology, Tissue Engineering and Biomaterials with this first thematic volume on Bioengineering Research of Chronic Wounds. Chronic wounds such as pressure ulcers, diabetic foot ulcers and venous leg ulcers are one of the most significant health problems nowadays, as highlighted in many of the chapters in this book. Taken together, these wound types has a socioeconomic impact which is comparable to that of cardiovascular diseases, osteoporosis and cancer.

Populations at risk are multitude, and include for example elderly with neuro-muscular impairments, cognitive disorders and peripheral vascular diseases. However, chronic wounds are not a problem confined to elderly and to patients at the end of their life, as young individuals, with spinal cord injury or lesions (e.g. multiple sclerosis), or diabetic patients are also susceptible. With an ever-growing elderly population (bedfast or chairfast elderly in particular) on the one hand, and the epidemic nature of diabetes in Western countries on the other hand, the impact of chronic wounds on human society is expected to escalate quickly over the next few years.

Unfortunately, the attention that chronic wounds received from the bioengineering community over the last 20 years or so was negligible compared to the attention focused on other major health problems such as cardiovascular, respiratory and orthopaedic disorders. Accordingly, in terms of quantity, bioengineering research in chronic wounds is very much lagging behind. In terms of quality however, research in this field has started to bloom for the last few years, adopting state-of-the-art approaches from the more mature fields, including e.g. sophisticated computer modeling, cellular and tissue engineering for basic research as well as therapy, biomolecular markers and proteomics for early diagnosis, biomaterials for tissue repair and more. This book has captured this flourishing research work, and is reflecting it in full. The 19 chapters in this book, written by well-known experts in the various fields of bioengineering research of chronic wounds who conduct their work in 7 different courtiers, present the frontier of knowledge
in the field, and are an excellent guide to the kind of research that should lead us forward to understanding why and how these wounds happen, how they can be treated, and even better, how they can be avoided.

Amit Gefen, Ph.D.
Editor, *Bioengineering Research of Chronic Wounds*
Series Editor, *Studies in Mechano-biology, Tissue Engineering and Biomaterials*
Contents

I Principles of Chronic Wound Pathology, Pathomechanics and Healing Response

- **Fundamentals of Pressure, Shear and Friction and Their Effects on the Human Body at Supported Postures**
 R.H.M. Goossens .. 1

- **Mechanobiology of Cutaneous Wound Healing and Scarring**
 Rei Ogawa, Dennis P. Orgill 31

- **Cell Migration along the Basement Membrane during Wound Repair. The Corneal Endothelium as a Model System**
 Sheldon R. Gordon ... 43

- **The Importance of the Microenvironment of Support Surfaces in the Prevalence of Pressure Ulcers**
 Steven I. Reger, Vinoth K. Ranganathan 85

II Mathematical Modeling of Chronic Wounds and Wound Healing

- **Partial Differential Equations for Modelling Wound Geometry**
 Hassan Ugail .. 101

- **A Suite of Continuum Models for Different Aspects in Wound Healing**
 Fred Vermolen, Etelvina Javierre............................. 127
III Computer Methods for Studying Biomechanical Conditions at Chronic Wound Sites: From Tissue to Cellular Scales

MRI Integrated with Computational Methods for Determining Internal Soft Tissue Loads as Related to Chronic Wounds
Sigal Portnoy, Nogah Shabshin, Itzhak Siev-Ner, Anat Kristal, Amit Gefen .. 169

A Finite-Element Biomechanical Model for Evaluating Buttock Tissue Loads in Seated Individuals with Spinal Cord Injury
Mohsen Makhsous, Fang Lin ... 181

Finite Element and Animal Studies of Scar Contractions Leading to Chronic Wounds
Cormac Flynn, Brendan McCormack ... 207

Cellular Deformations under Compression in Cells Involved in Deep Tissue Injury
Noa Slomka, Shira Or-Tzadikario, Amit Gefen 235

IV Tissue-Engineered Constructs for Studying and Repairing Chronic Wounds

Tissue Engineered Models: A Valuable Tool in Pressure Ulcer Research
Cees Oomens, Dan Bader ... 249

Tissue-Engineered Models for the Study of Cutaneous Wound-Healing
M.W. Carlson, S. Dong, J.A. Garlick, C. Egles 263

Tissue-Derived Materials for Adipose Regeneration
M.D. Ming-Huei Cheng, S. Uriel, Eric M. Brey 281

V Biochemical Markers for Early Identification and for Monitoring the Healing of Chronic Wounds

Clinical and Molecular Perspectives of Deep Tissue Injury: Changes in Molecular Markers in a Rat Model
Takashi Nagase, Hiromi Sanada, Gojiro Nakagami, Yunita Sari, Takeo Minematsu, Junko Sugama 301

Proteomic Approaches for Studying the Phases of Wound Healing
Laura E. Edsberg ... 343
VI Innovative Technologies and Devices in the Diagnosis and Treatment of Chronic Wounds

Bioengineering Techniques in Wound Assessment
Marco Romanelli, Valentina Dini .. 363

Optical Non-invasive Characterization of Chronic Wounds
Michael Neidrauer, Elisabeth S. Papazoglou........................ 381

Regenerative Wound Healing via Biomaterials
Anshu B. Mathur .. 405

Abdominal Wall Hernias and Biomaterials

Author Index ... 449