Keping Yan

Electrostatic Precipitation

11th International Conference on Electrostatic Precipitation, Hangzhou, 2008
Keping Yan

Electrostatic Precipitation

11th International Conference on Electrostatic Precipitation, Hangzhou, 2008

With 910 figures
The 11th International Conference on Electrostatic Precipitation was organized by The International Society for Electrostatic Precipitation (ISESP) and Local Chinese Organizing Committee

ISESP Board Members (http://www.isesp.org/)

Robert Crynack - President, USA
Tetsuji Oda - Vice-president, Japan
Wallis Harrison - Secretary, USA
Mark Berry - Treasurer, USA
Ralph Altman - USA
Veronique Arrondale - France
Istvan Berta - Hungary
Hidekatsu Fujishima - Japan
Michael J. Frank - Germany
P. Gurnani - India
Carsten Lund - Denmark
Jae-Duk Moon - Korea
Kjell Porle - Sweden
Gernot Mayer-Schwinning - Germany
Liqian Wang - China
Keping Yan - China

Conference Chairman: Jiming Hao
Conference Vice-Chairmen: Robert Crynack
Youwen Lin
Liqian Wang
Keping Yan
Conference Secretary: Weiping Liu
Keping Yan
Preface

We are pleased to welcome you to Hangzhou for ICESP XI. The concept of providing a forum for the exchange of information on research and application of electrostatic precipitation originated with Dr. Harry J. White. Then, the first conference was held in Monterey, California, USA, in October 1981. And the succeeding meetings were held in Kyoto, Abano Terme, Beijing, Washington DC, Budapest, Kyongju, Birmingham, South Africa, and Australia.

The focus of this meeting is on fundamental and applied electrostatic precipitation, bag filter, FGD, SCR and non-thermal plasmas for multi-pollutants emission control, such as PM2.5, SO\textsubscript{x}, NO\textsubscript{x}, Hg, VOC, and HC.

We dedicate the open session to Prof. Hongdi Zhang for his outstanding contributions to the organization of Chinese Society of Electrostatic Precipitation, the development of ESP and non-thermal plasma techniques. He was the first Secretary of Chinese Society of Electrostatic Precipitation, and one of the advisory committee members of ICESP XI. Prof. Zhang was born in Jan 1933 in Liaoning, and received his B.S. degree from Northeastern University, China in 1956. Then, he joined the Beijing Municipal Institute of Labour Protection to work on environmental protection. He is one of Chinese pioneers to dedicate their life to ESP, even during the period of the so-called Chinese Cultural Revolution. Back to the early of 1970’s, Prof. Zhang established an ESP lab with the institute to study ESP for dust, aerosol, and gas cleaning. Around 1988, together with Prof. Ruinian Li, he promoted the first non-thermal plasma project in China to study DeNO\textsubscript{x} and DeSO\textsubscript{2}. For over his 50 years professional life, he contributed himself not only to ESP industries but also to education and students. Unfortunately, Prof. Zhang passed away in July 2008, leaving many unfinished works. We would like to thank his family, his students, friends and Chinese ESP committee for encouraging us to dedicate the open session in memory of Prof. Hongdi Zhang.

We would also like to acknowledge financial supports from local Chinese industries, National Natural Science Foundation. All students in my laboratory provided invaluable assistance in preparing this conference. They are W. Chen, Y. Huang, X. Li, X. Tang, X. Zhang, Z. Zhang, J. Zhu, and H. Yan. We also like to thank Mr. Sun Hairong from the press company for his help to revise this proceeding.

We thank all the authors for their high quality contributions, session chairs, ISESP board, local organizing and advisory committee members for their comments and assistances.

Prof. Dr. Keping Yan
2008-10-08
CONTENTS

World-Wide Review
Development of Chinese Electrostatic Precipitator Technology
Y. Lin, W. Liu 3

Multi-pollutants Simultaneous Removals from Flue Gas

Some Technical Idea Evolutions Concerned with Electrostatic Precipitators in China
L. Wang, B. Fu 19

Enhancement of Collection Efficiencies of Electrostatic Precipitators: Indian Experiments
Avinash Chandra 27

Fundamentals and Mechanical Design
Modeling Mercury Capture within ESPs: Continuing Development and Validation
Herek L. Clack 37

Reduction of Rapping Losses to Improve ESP Performance
Stephen L. Francis, Andreas Bäck, Per Johansson 45

Advanced Risk Analysis for the Application of ESP-s to Clean Flammable Gas-pollutant Mixtures
István Kiss, Tamás Iváncsy, Bálint Németh, István Berta 50

ESP for Small Scale Wood Combustion
A. Laitinen, K. Karjalainen, A. Virtanen, J. Keskinen, M. Aho, J. Maunukksela, I. Talka 54

Dust flow Separator Type Electrostatic Precipitator for a Particulate Matter Emission Control from Natural Gas Combustion
L. Guan, G. Harvel, S. Park, J.S. Chang 57

Electrostatic Precipitator: The Next Generation
Roger Anthony Gale 62

Current Density and Efficiency of a Novel lab ESP for Fine Particles Collection
J. Zhu, Y. Shi, X. Zhang, H. Yan, K. Yan 65

Five Stages Electrostatic Precipitator Principles and Application
G. Xu, L. Xu 70

Application of STAAD in ESP structure design
H. Xie, R. Peng, X. Gao 73

Electric Resistance of Boiler Flue Gases and Collection Efficiency of ESP
X. Zhao 75

Non-static Collection Process of the Electrostatic Precipitator
W. Hao, H. Xiong 79

Study of Using Mixed Discharge Electrodes and Mixed Spacing of Pole to Pole for Electrostatic Precipitator
Q. Fang, B. Zhang 84

Experimental Investigation on the Collection of Fine Dust with High Resistivity by a Bipolar Discharging ESP
X. Xiang, Y. Wang, W. Chen 87

Designing ESP Systematically to Reduce Dust Emission
X. Lu, P. Ming, T. Wang, X. Gao, Z. Li 91

Research on Vibration Period Optimization of Electrostatic Precipitator
M. Hu, Y. Liu, Q. Yin, Z. Liu, X. Gao 94

Research and Application of the Extensive Resistivity and Efficient Electrostatic Precipitator
S. Huang, W. Liu, H. Tao 102
Application and Research on Technology of Longking Brand BEL Model ESP

Electrode Shape and collector plate Spacing Effects on ESP Performance

Resistance and Airflow Distribution of Rotary Plate

Onset Voltage of Corona in Electrostatic Filters as Influenced by Gas Flow

An Initial Exploration for Coulomb ESP

Aerodynamic Effects and ESP Models

Effect of the EHD Flow on Particle Surface Charging and the Collection Efficiency of Submicron and Ultrafine dust Particles in Wire-plate Type Electrostatic Precipitators

Electrohydrodynamic Turbulent Flow in a wide wire-plate Electrostatic Precipitator Measured by 3D PIV Method

Applying Numerical Simulation on Air Pollution Control Equipment

CFD Simulation of Electrostatic Precipitators and Fabric Filters State of the Art and Applications

Numerical Modeling of the Electro-hydrodynamics in a Hybrid Particulate Collector

CFD Numerical Simulation of ESP Airflow Distribution and Application of Flue Gas Distribution

Study and Application of Numerical Calculation Method for Gas Flow Distribution of Large Scale Electrostatic Precipitator

Experimental Study on Optimization of Electric Field Performance for Electrostatic Precipitator by Using Finite Element Method

Analytical study on ZT Collecting Electrode

Model EE I Technology in 1#125 MW Unit of Electrostatic Precipitator Application for GUODIAN Kaili Power Plant

Model EE II Technology in 2#600 MW Unit of Electrostatic Precipitator Application for GUODIAN Kaili Power Plant

Numerical Simulation of Influence of Baffle in Electric Field Entrance to Form Skewed Gas Flow

A numerical Simulation for Predicting Influence of Flow Pattern in Electrostatic Precipitator on Exit Re-entrainment Loss

Fine-Particles and Their Agglomeration

Research Progress of the Control Technology of the PM$_{10}$ from Combustion Sources

Enhanced Fine Particle and Mercury Emission Control Using the Indigo Agglomerator

Emission Reductions at a Chinese Power Station

On-line Measurement of Hazardous Fine Particles for the Future APC Technology

A Novel Method for Particle Sampling and Size-classified Electrical Charge Measurement at Power Plant Environment

Agglomeration Modelling of Sub-micron Particle During Coal Combustion Based on the Flocculation Theory

Integrated Control of Submicron Particles and Toxic Trace Elements by ESPs Combined with Chemical Agglomeration
Electrostatic Capture of PM$_{2.5}$ Emitted from Coal-fired Power Plant by Pulsed Corona Discharge Combined with DC Agglomeration
F. Xu, Z. Luo, B. Wei, L. Wang, X. Gao, M. Fang, K. Cen 242
An Approximate Expression for the Coagulation coefficient of Bipolar-charged Particles in an Alternating Electric field
B. Tan, L. Wang, Z. Wu 247
Improving Nano-particle Collection Efficiency and Suppressing Particle re-entrainment in an AC Electrostatic Precipitator with Hole-punched Electrode
Koji Yasumoto, Akinori Zukeran, Yasuhiro Takagi, Yoshiyasu Ehara, Toshiaki Yamamoto 251

Electrical Operation and Power Sources

Precipitator Performance Improvements and Energy Savings Based on IGBT Inverter Technology
Norbert Grass, Andreas Zintl 259
Performance Enhancements Achieved with High Frequency Switch Mode Power Supplies
H. Herder 264
High Frequency Power Supply Operation on Hot-Side ESP
M. Brandon Looney, Mark Berry, H. Herder, R. Guenther, R. W. Smith, R. Altman 270
Industrial Applications of Three-phase T/R for Upgrading ESP Performance
B. Zhang, R. Wang, K. Yan 276
Industrial Applications of a New AVC for Upgrading ESP to Save Energy and Improve Efficiency
J. Ma, Y. Yang, R. Wang, K. Yan 281
Highly efficient switch-mode 100 KV, 100 KW power supply for ESP applications
Alex Pokryvailo, Costel Carp, Cliff Scapellati 284
The Crystal Ball Gazing with Electrostatic Precipitators: V-I Curves Analysis.
V. Arrondel, G. Bacchiega, N. Gautier, M. Hamil, A. Renard 289
New Automatic Voltage Control Designs for Enhanced ESP Systems Integration, Improved Reliability, Safety and Troubleshooting Capabilities
John Comer, Royce Warnick, Mike Volker, Jason Horn 298
Another Concept of Three Phase High Frequency High Voltage Supply
Caryl Thomé, Denis Dupas 304
The Application Strategy of Three-phase HV Power Supply for Special Working Condition
Y. Chen, G. Lu, J. Guo 305
Applying the Technology of Compounded Type Power Control Rapping to Reduce the Outlet Emission Concentration
Y. Xie 310
Study on Efficiency Enhancing and Energy Saving of High Voltage Power Supply of EP
Y. Lei, M. Hu, Y. Liu, X. Gao, L. Wang 319
Serial/Parallel Resonant Converter (SPRC) in ESP Power
G. Zhang 323
The Development And Application of an Energy Saving System Based on the Optimal Control and Multi-parameter Feedback
G. Zheng, X. Xie, J. Guo, J. Li, J. Lian 328
Query on the Sustainable Development of Traditional Dust Precipitation Using Optimal Electric Spark Rate
F. Zhao, W. Yu, Z. Li, Y. Lu, J. Bian, S. Zhao, X. Zhang, Y. Dong 332
Comparative Study of Distribution of Collecting Plate Current Density on Electrostatic Precipitations with High Direct Current and Pulse Power Supply
J. Li, W. Cai 337
Development of Energy Saving and Efficiency Enhancing Electrostatic Precipitator Power Supply Control Equipment
Z. Lu, Q. Fu, Y. Li, J. Gao 341
Research on High Frequency Switched HV Power Supplies for ESP
R. Wang, Y. Wei 345
Design of Switch Mode Power Supply for ESP
A. Wang 348
Research and Application of Automatic Control Technology of Back Corona
J. Qiu, J. Guo, X Xie 350
The Research on Three-phase Medium-frequency DC High-voltage Power
Y. Jiang, Z. Zhang 354
Investigation of Current Density Distribution Model for Barb-plate ESP
Y. Guo, X. Xiang, B. Chen 359

SLC500 Programmerable Logic Controller Hot Standby Two-node Cluster
Y. Ge 363

Evaluation of HV Power Source for ESP
X. Zhou, F. Tang, J. Du 366

V-I characteristic Principle of Electrostatic Precipitator
J. He, G. Xu, G. Yu 370

Enhanced Fine Particle Collection by the Application of SMPS Energization
Kenneth Parker, Arne Thomas Haaland, Frode Vik 374

Two ESP Power Supply Patent Technologies
W. Wang 381

Flue Gas Conditioning and Back Corona
Particulate and Mercury Emissions Control by Non-traditional Conditioners
Rabi K. Sinha 387

Flue Gas Conditioning
S. N. Trivedi, R. C. Phadke 389

Modeling of Back Corona in Pulse Energized “Multizone” Precipitators
Tamás Iváncsy, Jenő Suda, István Kiss, István Berta 395

Some Investigations on Fly Ash Resistivity Generated in Indian Power Plants
Avinash Chandra 399

Enhancing ESP Efficiency for High Resistive Fly Ash by Reducing Flue Gas Temperature
Andreas Bäck 406

The Technical and Economical Analysis on the Application of FGC in Large Scale Coal-fired Units
Q. Liu, X. Chen, W. Chen 412

Upgrading of Existing Electrostatic Precipitator
Advanced Methods of Upgrading Electrostatic Precipitators
Tuomas Timonen, Alain Bill, Tarun Kr Ray, Minna Pelkonen, Hans-Eric Christiansson 419

Challenges for Reduction in Emission in Old Electrostatic Precipitators at Lower Cost
Debasish Chakrabarti, Robert Pritchard, Martin Kirsten, Christer Mauritsson 425

Least Cost to Maximise Dust Collection in Electrostatic Precipitators
Martin Kirsten, Anders Karlsson, Christer Mauritsson, Lena Lillieblad 429

ESP Renovation in Da Wukou Power Plant, Ningxia
P. Zhang 437

Hybrid ESP & FF Precipitation
Cost Effectively increasing the Filtration Area in Fabric Filters for Large Power Plants
Peter Wieslander, Stephen L. Francis 443

Long-term COHPAC Baghouse Performance at Alabama Power Company’s E. C. Gaston Units 2&3
Kenneth M. Cushing, W. Theron Grubb, Byron V. Corina, Ramsay L. Chang 449

Study of the Use of Bag Filters in Hot Gas Filtration Applications: Pilot Plant Experiences
B. Alonso-Fariñas, M. Lupión, B. Navarrete, V. J. Cortés 459

The R&D and Application of Electrostatic-fabric Organic Integrated Precipitator in China
W. Huang, H. Lin, K. Zheng 464

Research on Performance of Electrostatic-bag Precipitator with Comparative Industrial Tests
X. Dang, Y. Shi, G. Ma, D. Li 468

A Discussion on the ESP-FF Hybrid Precipitator
X. Zhao, S. Luo 472

Collection of High Concentration of Desulfurized Dust with ESP & FF
J. Ge, Y. Zhang, G. He, P. Zhang, D. Zhou 474

Application of ESP and Fabric Filter in Power Plants in China
X. Zhao, Y. Yao, Y. Du 478

Application of Electrostatic Fabric Hybrid Particulate Collector
Y. Yao, X. Zhao 482
Application of ControlLogix in Remote Monitoring System of ESP-FF Hybrid Precipitator
Y. Ge, T. Yu, L. Zhao 485

Numerical simulation on a Hybrid Electrostatic-bag Precipitator
J. Chen, X. Han 489

Wet Electrostatic Precipitation

Evaluation of Corrosion-Resistant Alloys for Wet Electrostatic Precipitator
Keigo Orita, Nobuhiko Shiromaru 495

Wet ESP for the Collection of Sub-micron Particles, Mists, and Air Toxics
Michael R. Beltran 499

Industrial Applications for Coal-fired Boilers

A Discussion about Strategy of Flue Gas Dust Removal for Indian Coal Fired Boiler
G. Lin 509

Assessment of Hot ESPs as Particulate Collector for Oxy-coal Combustion and CO2 Capture
Porle Kjell, Bäck Andreas, Francis Steve, Rydberg Stina 513

Recent Application and Running Cost of Moving Electrode Type Electrostatic Precipitator
Toshiaki Misaka, Yoshihiko Mochizuki 518

Retrofit of Capacity Expansion for ESPs of Boiler 2# of Aiyis power Plant in Jiaozuo
L. Yang, K. Bao, J. Li, R. Ma, X. Cheng 523

Study on Improving the Performance of Electrostatic Precipitator in the Large-scale Semi-dry Flue Gas Desulfurization System
F. Yu, X. Han, X. Li, H. Jiang, R. Du, Z. Li 527

Analysis and Countermeasures for Fly-ash Feature from Zhungeer Coal with Electrostatic Precipitation
X. Ke, K. Liang, X. Cheng, H. Hu 531

High Dust Concentration ESP for Coal-fired Boiler of 300 MW Generator
H. Xie, P. Ming, H. Ding 534

ESP Application on Combustion of High-sulfur Heavy Crude Oil
J. Ge, Y. Zhang, X. Xu, Z. Shen, P. Zhang 537

Regarding the Selection, Operation and Maintenance of Booster Fan
X. Wang, J. Ge, F. Tang, F. Yang, B. Li, G. Feng, L. Fei 540

The Application Practices of the Double-zone ESP in Coal-fired power Plant
H. Zhang, L. Meng, R. Zhang, J. Guo 543

Industrial Applications for Steel Industries

Successful Application of Longking Bf-ESP Technology in Brazil GA Steel Plant
Z. Zhong, H. Song, J. Zheng 549

Characteristics and Technical Improvement Investigation of Electrostatic Precipitator before Sintering Machine
J. Kang, J. Wang, R. Guo, K. Wang 553

Testing and Analysis of Coal Gas Dehydration Equipment in Combined Cycle Power Plant
L. Xiao, Z. Ding 557

FGD and SCR for Coal-fired Power Plants

Development of New Gas Cleaning System with Salt Solution Spray
Morio Kagami, Toshihide Noguchi 563

Numerical Investigation of the Entire Boiler System with SCR De-NOx Reactor
X. Cheng, B. Jin 567

Research on Complex Multi-pollutants Control Technology in a Large-scale Coal-fired Power Plant
X. Han, X. Li, M. Liu, H. Jiang, Y. Han 572

New Concept of CFB Boiler with FGD
X. Pan 576

Dry FGD Technology Research and Application in Steel Sintering
J. Zheng 578

Design and Application of Inlet nozzle of Dry Desulphurization ESP
Q. Zhan 581
The Proposal Comparison of Absorbent Preparation System of Wet Limestone-gypsum Flue Gas Desulphurization Process
D. Yan 585

Economic Analysis of Wet Flue Gas Desulphurization Project Operation
Y. Dai, Y. Shu 589

Discussion on the Mechanism of Semi-dry Desulphurization
J. Ge, Y. Dai 593

Analysis on Chimney Inner Wall Anti-corrosion in GGH Eliminated Wet Desulfurization System
P. Zhao, K. Wang 597

Simultaneous Removal of SO$_2$ and NO$_x$ by Wet Scrubbing Using Limestone Slurry

Study on Mid-temperature SCR DeNO$_x$ Catalyst under High SO$_2$ and CaO
Y. Dai, Y. Cui 606

Research and Application of Numerical Calculation Methods in SCR DeNO$_x$ Reactor & Duct Design
H. Chen 611

Retrofit project of 2×100 MW Units in Yushe Power Plant, Shanxi Province Using Tow Boilers-one CFB FGD
F. Lin, E. Lian 616

Design and Application of the Dry-FGD Process in Sanming Steel No.2 Sintering Plant
Z. Yu, Q. Li, H. Xu, C. Lin 620

The Fouling Characteristics and Comparative Analysis of Cleaning Technology of SCR
Y. Gu, B. Jin, G. Xiao 624

Non-Thermal Plasmas

AC/DC Power Modulation for Corona Plasma Generation
A.J.M. Pemen, T.H.P. Ariaans, Z. Liu, E.J.M. van Heesch, G.J.J. Winands, Keping Yan 629

Development of the PPCP Technology in IEPE
J. Zhao, X. Ren, B. Wang, Y. Wu, R. Yang, G. Tu, Y. Zhang 633

Non-thermal Plasma Processing for Dilute VOCs Decomposition Combined with the Catalyst
Tetsuji Oda, Hikaru Kuramochi, Ryo Ono 638

Performance Characteristics of Pilot-scale NO Removal from Boiler Emission Using Plasma-chemical Process
Hidekatsu Fujishima, Tomoyuki Kuroki, Atsuyoshi Tatsumi, Masaaki Okubo, Keiichi Otsuka, Toshiaki Yamamoto, Keiichiro Yoshida 644

Experimental Investigation on Styrene Emission with a 1000m3/h Plasma System
X. Zhang, J. Zhu, Y. Huang, K. Yan 649

Streamer Corona Plasmas and NO Removal
X. Hu, X. Jiang, K. Yan, R. Li 653

Influence of Ratio of NO/NO$_2$ on NO$_x$ Removal Using DBD with Urea Solution
Yusuke Kudo, Hiroshi Taguchi, Sumio Kogoshi 657

Catalysis-assisted Decomposition of Aqueous 2,4,6-Trinitrotoluene by Pulsed High Voltage Discharge Process
H. Chen, Y. Shi, L. Lei, Y. Zhang, H. Chu, R. Yang, Y. Zhang 661

Plasma-catalytic Removal of Formaldehyde in Atmospheric Pressure Gas Streams
H. Ding, Z. Zhang 665

Relationship between Discharge Electrode Geometry and Ozone Concentration in Electrostatic Precipitator
Yoshiyasu Ebara, Daiki Yagishita, Toshiaki Yamamoto, Akinori Zukeran, Koji Yasumoto 670

Study of Carbon Monoxide Oxidation by Discharge
Yoshiyasu Ebara, Toshiaki Yamamoto, Akinori Zukeran, Koji Yasumoto 674

Application of a Dielectric Barrier Discharge Reactor for Diesel PM Removal
Shuiliang Yao, Satoshi Kodama, Shin Yamamoto, Chieko Mine, Yuichi Fujioka, Chiihiro Fushimi 677

Catalyst Size Impact on Non-thermal Plasma Catalyst Assisted DeNO$_x$ Reactors
M. Chen, Adrian Mihalciou, Kazumori Takashima, Akira Mizuno 681

The Study on Series of Copper Catalyst in the Reactor of Dielectric Barrier Discharge to Remove NO$_x$
M. Chen, L. Yan, X. Wang, T. Takashima, A. Mizuno 685

VOC Removal Using Adsorption and Surface Discharge
Yuiiro Oishi, Yoshiyasu Ebara, Toshiaki Yamamoto 690

A Novel Concept of Remediation of Polluted Streams Using High Energy Density glow Discharge (HEDGe)
Alex Pokryvailo 694
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaseous Elemental Mercury Oxidation by Non-thermal Plasma</td>
<td>H. Li, T. Zhu, P. Tang, X. Xing</td>
<td>699</td>
</tr>
<tr>
<td>A Multiple-switch Technology for High-power Pulse Discharging</td>
<td>Z. Liu, A. J. M. Pemen, E. J. M. Van Heesch, Keping Yan, G. J. J. Winands, D. B. Pawlok</td>
<td>704</td>
</tr>
<tr>
<td>Humidity and Oxygen Effects on Dimethyl Sulfide Decomposition by a Plasma Corona Reactor</td>
<td>J. Chen, Y. Shi, H. Pan, Q. Su</td>
<td>709</td>
</tr>
<tr>
<td>Surface Modification of Polestar Fabrics by Non-thermal Plasma for Improving Hydrophilic Properties</td>
<td>S. Inbakumar, A. Anukaliani</td>
<td>718</td>
</tr>
<tr>
<td>Predictive Model of Nonequilibrium Plasma Decontamination Efficiency for Gaseous Pollutant</td>
<td>Z. Li, Z. Hu, X. Yan</td>
<td>723</td>
</tr>
<tr>
<td>Applied Electrostatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Study of Electrostatic Precipitation with Earthed Atomizing Discharges</td>
<td>J. Mi, D. Xu, C. Hao</td>
<td>729</td>
</tr>
<tr>
<td>Integrated Clarification Technology for De-dusting, Desulfurization and Odor Elimination</td>
<td>Q. Huang</td>
<td>733</td>
</tr>
<tr>
<td>Introduction of High Precision Charging Technique Applied in Pulsed Magnetron Modulator for Industrial Computerized Tomography System</td>
<td>Y. Zhang, X. Ren, G. Tu, X. Li</td>
<td>737</td>
</tr>
<tr>
<td>Discrepant ESD-CDM Test System and Failure Yield Prediction between ESD Association and JEDEC Standards</td>
<td>Yuparwadee Satirakul, Tanawut Butgnam, Pavittra Jittsuntisuk, Surapol Phunyapinuant</td>
<td>740</td>
</tr>
</tbody>
</table>