Studies in Computational Intelligence, Volume 160

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage: springer.com

Vol. 138. Bruno Apolloni, Witold Pedrycz, Simone Bassi and Dario Malchiodi
The Puzzle of Granular Computing, 2008
ISBN 978-3-540-79863-7

Vol. 139. Jan Drugowitsch
Design and Analysis of Learning Classifier Systems, 2008
ISBN 978-3-540-79865-1

Vol. 140. Nadia Magnenat-Thalmann, Lakhmi C. Jain and N. Ichalkaranje (Eds.)
New Advances in Virtual Humans, 2008

Vol. 141. Christa Sommerer, Lakhmi C. Jain and Laurent Mignonneau (Eds.)
The Art and Science of Interface and Interaction Design (Vol. 1), 2008
ISBN 978-3-540-79869-9

Vol. 142. George A. Tsihrintzis, Maria Virvou, Robert J. Howlett and Lakhmi C. Jain (Eds.)
New Directions in Intelligent Interactive Multimedia, 2008
ISBN 978-3-540-68126-7

Vol. 143. Uday K. Chakraborty (Ed.)
Advances in Differential Evolution, 2008
ISBN 978-3-540-68275-3

Vol. 144. Andreas Fink and Franz Rothlauf (Eds.)
Advances in Computational Intelligence in Transport, Logistics, and Supply Chain Management, 2008

Vol. 145. Mikhail Ju. Moshkov, Marcin Pliszczyk and Beata Zielosko
Partial Covers, Reducts and Decision Rules in Rough Sets, 2008

Vol. 146. Fatos Xhafa and Ajith Abraham (Eds.)
Metaheuristics for Scheduling in Distributed Computing Environments, 2008
ISBN 978-3-540-69260-7

Vol. 147. Oliver Kramer

Vol. 148. Philipp Limbourg
Dependability Modelling under Uncertainty, 2008
ISBN 978-3-540-69286-7

Vol. 149. Roger Lee (Ed.)
ISBN 978-3-540-70559-8

Vol. 150. Roger Lee (Ed.)

Vol. 151. Tomasz G. Smolinski, Mariofanna G. Milanova and Aboul-Ella Hassanien (Eds.)
Computational Intelligence in Biomedicine and Bioinformatics, 2008
ISBN 978-3-540-70776-9

Vol. 152. Jaroslaw Stepniak
Rough – Granular Computing in Knowledge Discovery and Data Mining, 2008
ISBN 978-3-540-70800-1

Vol. 153. Carlos Cotta and Jano van Hemert (Eds.)
Recent Advances in Evolutionary Computation for Combinatorial Optimization, 2008
ISBN 978-3-540-70806-3

Vol. 154. Oscar Castillo, Patricia Melin, Janusz Kacprzyk and Witold Pedrycz (Eds.)
Soft Computing for Hybrid Intelligent Systems, 2008
ISBN 978-3-540-70811-7

Vol. 155. Hamid R. Tizhoosh and M. Ventresca (Eds.)
Oppositional Concepts in Computational Intelligence, 2008
ISBN 978-3-540-70826-1

Vol. 156. Dawn E. Holmes and Lakhmi C. Jain (Eds.)
Innovations in Bayesian Networks, 2008
ISBN 978-3-540-85063-6

Vol. 157. Ying-ping Chen and Meng-Hiot Lim (Eds.)
Linkage in Evolutionary Computation, 2008
ISBN 978-3-540-85067-0

Vol. 158. Marina Gavriloa (Ed.)
Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence, 2009
ISBN 978-3-540-85125-7

Vol. 159. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence, 2009
ISBN 978-3-540-85125-7

Vol. 160. Vasantha Kalyani David and Sundaramoorthy Rajasekaran
Pattern Recognition Using Neural and Functional Networks, 2009
Retracted Book: Pattern Recognition Using Neural and Functional Networks
Authors

Vasantha Kalyani David and S. Rajasekaran

About the Authors

Vasantha Kalyani David, PhD., is a Selection Grade Lecturer in Computer Science in Avinashilingam University for Women, Coimbatore. Earlier a mathematician with a Master of Philosophy in Mathematics and later did research in Computer Science. Dr. Vasantha Kalyani David has published many papers in areas of Soft Computing, Her research interests include Neural Networks, Artificial Intelligence, Fuzzy Logic, Genetic Algorithms, Cellular Automata, Theoretical Computer Science and Automata Theory.

S. Rajasekaran, DSc, (Civil Engineering) is Professor of Infrastructure Engineering., PSG College of Technology, Coimbatore. He has over 41 years of teaching and research experience and more than 300 research papers to his credit. His areas of special interest include Structural Engineering, Finite Element Analysis, and application of Soft Computing techniques in Structural Engineering.
Biologically inspired computing is different from conventional computing. It has a different feel; often the terminology does not sound like it’s talking about machines. The activities of this computing sound more human than mechanistic as people speak of machines that behave, react, self-organize, learn, generalize, remember and even to forget. Much of this technology tries to mimic nature’s approach in order to mimic some of nature’s capabilities. They have a rigorous, mathematical basis and neural networks for example have a statistically valid set on which the network is trained.

Two outlines are suggested as the possible tracks for pattern recognition. They are neural networks and functional networks. Neural Networks (many interconnected elements operating in parallel) carry out tasks that are not only beyond the scope of conventional processing but also cannot be understood in the same terms. Imaging applications for neural networks seem to be a natural fit. Neural networks love to do pattern recognition. A new approach to pattern recognition using microARTMAP together with wavelet transforms in the context of hand written characters, gestures and signatures have been dealt. The Kohonen Network, Back Propagation Networks and Competitive Hopfield Neural Network have been considered for various applications.

Functional networks, being a generalized form of Neural Networks where functions are learned rather than weights is compared with Multiple Regression Analysis for some applications and the results are seen to be coincident.

New kinds of intelligence can be added to machines, and we will have the possibility of learning more about learning. Thus our imaginations and options are being stretched. These new machines will be fault-tolerant, intelligent and self-programming thus trying to make the machines smarter. So as to make those who use the techniques even smarter.

Chapter 1 is a brief introduction to Neural and Functional networks in the context of Pattern recognition using these disciplines **Chapter 2** gives a review of the architectures relevant to the investigation and the development of these technologies in the past few decades.
Chapter 3 begins with the look at the recognition of handwritten alphabets using the algorithm for ordered list of boundary pixels as well as the Kohonen Self-Organizing Map (SOM). Chapter 4 describes the architecture of the MicroARTMAP and its capability.

Chapter 5 the MicroARTMAP is augmented with a moment based feature extractor and applied to character recognition in this chapter. Chapter 6 illustrates the use of wavelet transforms together with MicroARTMAP for character recognition. The microARTMAP gave solutions to problems in civil engineering like classification of soil problem, finding the load from yield pattern of a plate and finding earthquake parameters from a given response spectrum.

Chapter 7 MicroARTMAP and Back Propagation Network have been compared and presented for gesture recognition and signature verification. Solving scheduling problem by means of a Competitive Hopfield Neural Network are discussed in Chapter 8 Multiple Regression methods considered as a recognizer is compared with functional networks in solving certain problems as shown in Chapter 9. Conclusion and further applications are suggested in Chapter 10.
Contents

1 Retracted Chapter: Introduction

1.1 Introduction ... 1
1.2 Recognition through Algorithm and Kohonen’s Self Organizing Map ... 1
1.3 MicroARTMAP .. 2
1.4 Wavelet Transforms 2
1.5 Gesture Recognition 3
1.6 Competitive Hopfield Neural Network 4
1.7 Neural and Functional Networks............................ 5
1.8 Objectives and Scope of the Investigation 5
1.9 Organization of the Book 6
1.10 Summary .. 7

2 Retracted Chapter: Review of Architectures Relevant to the Investigation

2.1 Introduction ... 9
2.2 Recognition through Self Organizing Map 9
2.3 The μARTMAP ... 10
2.4 Wavelet Transforms and MicroARTMAP 10
2.5 MicroARTMAP and Gesture Recognition 11
2.6 Competitive Hopfield Neural Network 11
2.7 Functional Networks and Multiple Regression Analysis 12
2.8 Summary .. 12

3 Retracted Chapter: Recognition of English and Tamil Alphabets Using Kohonen’s Self-organizing Map

3.1 Introduction ... 15
3.2 Recognition of Handwritten Characters Using Ordered List of Image Pixels on Its Boundary 15
3.3 The Kohonen Feature Map 18
4 Retracted Chapter: Adaptive Resonance Theory Networks

4.1 Introduction ... 27
4.2 ART Network .. 28
 4.2.1 Resonant State .. 28
 4.2.2 The STM and LTM Traces 28
 4.2.3 The Structure of the ART Model 30
 4.2.4 Pattern-Matching Cycle in an ART Network 31
 4.2.5 The 2/3 Rule .. 31
 4.2.6 Gain Control Mechanism 32
4.3 Fuzzy ART .. 33
 4.3.1 Analogy between ART1 and Fuzzy ART 33
 4.3.2 Fast-Learn, Slow-Recode and Complement Coding . 34
 4.3.3 Complement Coding 34
 4.3.4 Weight Vectors 36
 4.3.5 Parameters ... 36
 4.3.6 Category Choice 36
 4.3.7 Resonance or Reset 37
 4.3.8 Learning Law .. 37
 4.3.9 Normalization of Fuzzy ART Inputs 38
 4.3.10 Geometric Interpretation of Fuzzy ART 39
 4.3.11 Fuzzy ART Category Boxes in Fuzzy Cubes 39
 4.3.12 Fuzzy ART Stable Category Learning 42
4.4 Fuzzy ARTMAP .. 43
 4.4.1 Fuzzy ARTMAP and MicroARTMAP 43
 4.4.2 MicroARTMAP Algorithm (Supervised Neural Network Architecture) 44
 4.4.3 Map Field Activation 45
 4.4.4 Match Tracking 45
 4.4.5 Map Field Learning 46
 4.4.6 Defining H .. 46
 4.4.7 Training of μARTMAP 47
 4.4.8 Inter ART Reset 47
 4.4.9 Offline Evaluation 48
 4.4.10 μARTMAP Prediction 48
5 Retracted Chapter: Applications of MicroARTMAP

5.1 Introduction ... 51
5.2 Recognition of Handwritten Alphabets by μARTMAP 51
5.3 Recognition of Handwritten Words by μARTMAP 53
5.4 Recognition of Handwritten Alphabets by μARTMAP Augmented with Moment-Based Feature Extractor 53
5.4.1 Introduction 53
5.4.2 Steps Involved in Obtaining Moment Invariants 55
5.5 Recognition of Handwritten Numbers by μARTMAP Using Hamming Distance .. 59
5.6 Recognition of Alphabets and Numbers Using μARTMAP with Only One Exemplar for Training 60
5.7 Recognition of Alphabets by μARTMAP with Increased Sample Size .. 61
5.8 BIS Classification of Soil 61
5.9 Plasticization of Clamped Isotropic Plate 64
5.10 Application to Earthquake Engineering 65
5.11 Summary .. 71

6 Retracted Chapter: Wavelet Transforms and MicroARTMAP

6.1 Introduction ... 73
6.2 The Need for Transforms 73
6.3 Fourier Transform .. 73
6.4 Transforms Available 74
6.5 Wavelet Transforms 74
6.6 Continuous Wavelet Transforms (CWT) 75
6.7 Discrete Wavelet Transforms (DWT) 75
6.8 Wavelet Functions ... 77
6.9 Wavelet Analysis ... 77
6.10 Schematic Representation of the Working of a Wavelet 78
6.11 Handwritten Characters Recognition Using Wavelet Transforms and MicroARTMAP 82
6.12 Wavelet Transforms in Two Dimensions 82
6.13 The Two-Dimensional DWT 84
6.14 Recognition of Handwritten Alphabets Using Wavelet Packets and MicroARTMAP 85
7 Retracted Chapter: Gesture and Signature Recognition Using MicroARTMAP
 7.1 Introduction ... 93
 7.2 Gestures .. 93
 7.3 Gesture Recognition 93
 7.4 Voice Recognition 94
 7.5 Hand Writing Recognition 95
 7.6 Hand Gestures in HCI (Human – Computer Interaction) 96
 7.7 Gesture Processing 98
 7.7.1 Gesture Acquisition – Requirements 98
 7.7.2 Gesture Preprocessing 99
 7.7.3 Feature Extraction 99
 7.7.4 Statistical Approach 99
 7.7.5 Block Processing 101
 7.8 Wavelet Approach .. 101
 7.8.1 DWT Selection 103
 7.9 Neural Network for Gesture Recognition 103
 7.9.1 Application – Robotics – Robotic Arm Model 104
 7.10 Interface Circuit .. 106
 7.11 Back Propagation Network 107
 7.12 Statistical Approach 107
 7.13 Block Processing: For 16 Features 107
 7.14 Wavelet Approach 110
 7.15 MicroARTMAP ... 111
 7.16 Signature Recognition Using MicroARTMAP and Block Processing .. 112
 7.17 Summary .. 113

8 Retracted Chapter: Solving Scheduling Problems with Competitive Hopfield Neural Networks 115
 8.1 Introduction ... 115
 8.2 The Energy Function 115
 8.3 Algorithm ... 117
 8.4 Simulation Example Case (i) 117
 8.5 Example Case (ii) ... 119
 8.6 Summary .. 122
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Retracted Chapter: Functional Networks</td>
<td>123</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>123</td>
</tr>
<tr>
<td>9.2</td>
<td>Functional Networks</td>
<td>123</td>
</tr>
<tr>
<td>9.3</td>
<td>Procedure to Work with Functional Networks</td>
<td>124</td>
</tr>
<tr>
<td>9.4</td>
<td>The Associativity Functional Network</td>
<td>125</td>
</tr>
<tr>
<td>9.5</td>
<td>Multiple Regression Methods and Functional Networks</td>
<td>127</td>
</tr>
<tr>
<td>9.6</td>
<td>Rock Identification by Functional Networks</td>
<td>128</td>
</tr>
<tr>
<td>9.7</td>
<td>Hot Extrusion of Steel</td>
<td>131</td>
</tr>
<tr>
<td>9.8</td>
<td>Summary</td>
<td>134</td>
</tr>
<tr>
<td>10</td>
<td>Retracted Chapter: Conclusions and Suggestions for Future Work</td>
<td>135</td>
</tr>
<tr>
<td>10.1</td>
<td>Conclusions</td>
<td>135</td>
</tr>
<tr>
<td>10.2</td>
<td>Suggestions for Future Work</td>
<td>136</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>A</td>
<td>MicroARTMAP MATLAB Implementation</td>
<td>143</td>
</tr>
<tr>
<td>B</td>
<td>DWT on db1 Wavelets – number.m</td>
<td>155</td>
</tr>
<tr>
<td>C</td>
<td>Inputs to ARTMAP for Signatures</td>
<td>159</td>
</tr>
<tr>
<td>D</td>
<td>The Competitive Hopfield Neural Network</td>
<td>163</td>
</tr>
<tr>
<td>E</td>
<td>Moment Invariants for Handwritten Characters</td>
<td>169</td>
</tr>
<tr>
<td>F</td>
<td>Pattern.cpp</td>
<td>177</td>
</tr>
<tr>
<td>F</td>
<td>handpgm2.m</td>
<td>183</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Architecture for Gestural Control of Memory and Display 4
3.1 Recognition of Alphabet P .. 16
3.2 Recognition of Alphabet Close to R 16
3.3 Nearest Recognition of U .. 17
3.4 Alphabet A Taught to the System 17
3.5 Kohonen Network .. 18
3.6 Semi-log Plot Between Average Distance and Cycle Number 25
4.1 ART Network .. 29
4.2 A Pattern-Matching Cycle in an ART Network 30
4.3 The Fuzzy ART ... 35
4.4 Fuzzy ART Category Boxes ... 40
4.5 Fast Learning ... 40
4.6 Weight Vector W ... 42
4.7 Fuzzy ARTMAP Architecture 43
4.8 MicroARTMAP Architecture .. 44
5.1 Sample of Handwritten Characters 52
5.2 The Character “Z” and Quarters 54
5.3 Soil Classification .. 54
5.4 Isotropic plate (Clamped) ... 63
5.5 Response spectra for M = 6, S = 0, H = 1, R = 30 68
5.6 Response Spectra for M = 8, S = 0, H = 30, R = 50 68
5.7 Response spectra for M = 7.5, S = 2, H = 8, R = 45 69
5.8 Black and white figure of Fig. 5.5 69
5.9 Figure (Fig. 5.8) divided into eight parts Number of black
counts in each part is c1 = 4731, c2 = 4881, c3 = 4977,
c4 = 4982, c5 = 4732, c6 = 4882, c7 = 4978, c8 = 4983 70
5.10 Comparison of MICROARTMAP with BPN 71
XVI List of Figures

6.1 Decomposition of a Signal ... 75
6.2 The DWT and CWT of a Signal 76
6.3 Tree Mode Analysis of a Signal 79
6.4 Shifting and Scaling .. 80
6.5 DWT of a signal ... 81
6.6 Wavelet transform applied to an image 84
6.7 Multiresolution scheme after one and two levels of
decomposition .. 84
6.8 The Decomposition Tree ... 86
6.9 The Best Tree .. 87
6.10 Analysed and Denoised Signal 88
6.11 2-D Wavelet Selection Upto Level 5 89

7.1 Gestural Taxonomy for HCI .. 96
7.2 Overall Block Diagram ... 97
7.3 Acquired Gestures ... 98
7.4 Gesture Preprocessing .. 99
7.5 Block Processing - 16 Features 100
7.6 Images After Wavelet Transform 101
7.7 Neural Net block diagram .. 103
7.8 Robotic Arm Model .. 104
7.9 Scope of the Movement ... 105
7.10 Interface Circuit ... 106
7.11 Pin Configuration of ULN 2003 107
7.12 BPN - Statistical Approach 108
7.13 BPN - Block Processing ... 109
7.14 BPN - Wavelet Approach .. 110
7.15 BPN - Wavelet Approach .. 113

8.1 3-D Hopfield Neural Network 116
8.2 Simulation results Case (i) .. 120
8.3 Simulation results obtained Case (ii) 120

9.1 Functional Network ... 124
9.2 Associativity Functional network 125
9.3 Comparison of actual vs functional networks 133
List of Tables

3.1 Recognition run for English Alphabets (Two inputs given at the same time) ... 21
3.2 Recognition run for both English and Tamil Alphabets (Two inputs given together) ... 22
3.3 Recognition run for Tamil Alphabets (Two inputs given at the same time) ... 23
3.3 (continued) ... 24
3.4 Comparison of the Recognition of Alphabets 25

5.1 Moment-Based Invariants 56
5.2 Moment Invariants for Alphabets given to \(\mu \)ARTMAP 57
5.3 Recognition of numerals with varying Hamming Distance 60
5.4 IS Classification of Soil 62
5.5 Moment Invariants for Yield Pattern for Clamped Isotropic Plate .. 64
5.6 M, S, H and R for Different Response Spectra.............. 66
5.7 Black Pixel Count in the Split Response Spectra 67

6.1 Statistical Measures for the Image given as Input to \(\mu \)ARTMAP ... 90

7.1 Data Set - Block Processing With 16 Features 102
7.2 BPN-Statistical Approach 108
7.3 BPN-Block Processing with 16 features 109
7.4 BPN-Wavelet Approach 110
7.5 MicroARTMAP - Block Processing with 16 features 111
7.6 MicroARTMAP - Wavelet Approach 111

8.1a Resource requested Matrix 118
8.1b Timing Constraints Matrix 118
8.1c Initial States for CHNN Case (i) 119
8.1d Weighting Factor of CHNN 119
8.2 Initial states for CHNN Case (ii) 121
XVIII List of Tables

9.1 Normalized Input and Output for Rock Classification Problem .. 129
9.2 Undetermined Parameters .. 130
9.3 Normalized Inputs and Output ... 132
9.4 Undetermined Parameters .. 133
List of Notations

ε - belongs to
- strain

$<, =, >$ - either less than or equal to or greater than

\forall - for all

$|.|$ - fuzzy count

\wedge - fuzzy intersection

\vee - fuzzy union

\Rightarrow - implies

\int - integral

\oplus - includes operator

\cap - intersection operator

$||$ - modulus operator

$|p|$ - norm of p given by $\sum_{i=1}^{n} p_i$ where $p = (p_1, p_2, ..., p_n)$

τ - shear strength

σ - normal stress

Σ - summation

\bigcup - union vector

$\int \int$ - double integral

$[0, 1]$ - closed interval between 0 and 1

$[0, 1]^n$ - fuzzy n-cube

a - approximate signal

a^c - fuzzy complement of a, i.e., $a = 1 - a$

A - vector

A' - normalized vector of A

ART^a - fuzzy ART module

ART^b - fuzzy ART module

BLU - basic length unit

- Lead screw pitch / number of revolutions

C - Cohesion intercept

CWT - continuous wavelet transforms
C₁, C₂, C₃, C₄, C₅, C₆ - refer to weighting factors

\[C(a, b) = \int_{-\infty}^{+\infty} f(x) \psi_{a,b}(x) \, dx \]

gives wavelet co-efficients

\[C_{AN}(k) = \int_{-\infty}^{+\infty} f(x) \psi_{N,k}(x) \, dx \]

gives approximate co-efficients

\[C_{DN}(k) = \int_{-\infty}^{+\infty} f(x) \psi_{N,k}(x) \, dx \]

gives detailed co-efficients

d - detailed version

d - Euclidean distance

DWT - discrete wavelet transforms

\[e_j = f_1(x_{ij}) + f_2(x_{2j}) - f_3(x_{3j}) \]

e_j - error in the j-th data

E - Young’s modulus

E - Number of times stepper motor has to be energized

E - Energy function

E - Euclidean norm of error function

\[E = \frac{1}{2} \sum_{i=1}^{n} (O_i - F(i))^2 \]

E - sum of the squares of the error for all data

\[E = \sum_{j=1}^{n} e_j^T e_j \]

E_p - plastic modulus

E_p - entropy of parent node

E_A, E_H, E_V, E_D - entropy of four offsprings. Approximation, horizontal, vertical and diagonal details

E(f) - additive cost function

- approximate neural function

\[f_i(x) = \sum_{j=1}^{m} a_{ij} \phi_{ij}(X) \]

F_{ab} - map field

F₁ → F₂ - mapping from F₁ to F₂

fₙ - cyclic frequency

g(n) - high pass filter

h - hamming distance

h_j - contribution to H of set A_j

h_{max} - upper bound on h_j
h(n) - low pass filter
H - conditional entropy
H_{max} - upper bound on H
H(G_{ijk}) - heaviside function
H(B/A) - conditional entropy
m_{pq}, p, q = 0, 1, 2, . . . , n - moment transformation
M - mass
\mathbf{M} - earthquake magnitude
\mathbf{M} - minimum step angle
\mathbf{M} - total number of machines
\mathbf{M}, \mathbf{R}, \mathbf{S}, \mathbf{H} - Magnitude, Site condition, Focal depth, Epicentral distance from response spectrum
m - strain rate sensitivity index
N - total number of processes
Net_{ijk} - total input to the neuron (i, j, k)
n - strain hardening exponent
\mathbf{P_i} - required execution time required by a process
R - required angle
\mathbf{R} - augmented function
R = E + \langle a \rangle [\phi_0] [\lambda] - \langle \lambda \rangle \{\alpha\}
R = \langle a \rangle [\alpha] + \langle a \rangle + \langle a \rangle \{\phi_0 \} [\lambda] - \langle \lambda \rangle \{\alpha\}
R_{is} - process i requires resource s
t - thickness of the plate
\mathbf{T} - maximum time quantum of a process
\mathbf{T_j} - choice function
\mathbf{T_n} - natural vibration period
\mathbf{V_{ijk}} - state variable representing whether or not a job i is executed on a machine j at a certain time k
\mathbf{W}_{new} - updated weight vector
\mathbf{W}_{old} - old weight vector
\mathbf{W}_{xyzijk} - synaptic interconnection strength
\mathbf{W}_\mathbf{\phi}, \mathbf{W}_\mathbf{\psi}^H, \mathbf{W}_\mathbf{\psi}^V and \mathbf{W}_\mathbf{\psi}^D - quarter size output subimages
\mathbf{x(n)} - original signal
x(n)* h(n) = \sum_{k=-\infty}^{+\infty} x(k) * h(n - k)
\mathbf{y_{high}}(k) - output of high pass filter
\mathbf{y_{low}}(k) - outputs of low pass filter
\mathbf{\alpha} - choice parameter
\mathbf{\beta} - material thermal constant
\mathbf{\delta(a,b)} - Kronecker delta function
\mathbf{\phi} - shape functions (1, x, x^2, . . . , x^n) or (1, \sin(x), \cos(x), \sin(2x), \cos(2x), \sin(3x), \cos(3x)........)
\mathbf{\phi} - angle of internal friction
XXII List of Notations

\[\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6, \phi_7 \] - invariant functions
\[\eta_{pq} \] - normalized central moments
\[\phi(x, y) \] - two dimensional scaling function
\[\phi_{i, m, n}(x, y) \] - scaled basis function
\[\mu_{pq} \] - central moments
\[\mu \text{ARTMAP} \] - microARTMAP
\[\nu \] - Poisson ratio
\[\theta_{ijk} \] - bias input
\[\rho \] - vigilance parameters
\[\sigma_0 \] - yield stress
\[\psi(x) \] - wavelet function
\[\psi(u) \] - Fourier transform
\[\psi_{a, b}(x) \] - mother wavelet generates basis functions
\[\psi^D(x, y) \] - variations along diagonals
\[\psi^H(x, y) \] - variations along columns (horizontal)
\[\psi^V(x, y) \] - variations along rows (vertical)
\[\psi_{i, j, m, n}(x, y) \] - translated basis function
\[\omega_n \] - circular frequency
\[\frac{\partial(\cdot)}{\partial(\cdot)} \] - partial derivative
\[2/3 \text{ rule} \] - two out of possible three inputs are active