Tim Leiner
Mathias Goyen
Martin Rohrer
Stefan Schönberg (Eds.)

Clinical Blood Pool MR Imaging
Tim Leiner
Mathias Goyen
Martin Rohrer
Stefan Schönberg (Eds.)

Clinical Blood Pool MR Imaging

With 331 Figures and 26 Tables

Springer
Clinical Blood Pool MR Imaging
The Vasovist® Product Monograph

Marketing Approval Number EU1.DI.06.2008.0017
ISBN 978-3-540-77860-8 Springer Medizin Verlag Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer Medizin Verlag
springer.com
© Springer Medizin Verlag Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Design: deblik Berlin
Typesetting: TypoStudio Tobias Schaedla, Heidelberg
Cover illustrations: courtesy of Dr. Alexander Huppertz, Imaging Science Institute, Charité, Berlin, Germany, Dr. Henrik Michaely, Medical Faculty Mannheim, University of Heidelberg, Germany and Dr. Regina Beets-Tan, Maastricht University Medical Center, The Netherlands
Printer: Groschi! Druckzentrum GmbH, Heidelberg

SPIN: 12215607

18/5135 – 5 4 3 2 1 0
Magnetic resonance angiography has made great strides, with continuing improvements in hardware, pulse sequencing, and know-how allowing ever-increasing speed, resolution, and suppression of artifacts. However, an inherent physical barrier has always been limited SNR. Gadolinium contrast agents help to increase SNR by facilitating T1 relaxation, but they can be injected only at a finite rate and at a limited molar dose, and there is a rapid drop in concentration following the brief arterial phase due to redistribution into the extracellular fluid compartment. With its sixfold increase in T1 relaxivity, blood pool distribution, and longer serum half-life, Vasovist® represents a new breakthrough which promises to revolutionize MRA image quality once again.

This excellent treatise on Vasovist®, created by a team of exceptional faculty who are pioneers in MR angiography, covers the basic techniques, safety, efficacy, image processing, and pharmacoeconomic details, to successfully implement a new level of MRA image quality with this new contrast agent. In addition to improving all the usual arterial phase MRA applications, the blood pool distribution opens up new possibilities, including detecting internal bleeding and imaging stent graft endoleaks, which are reviewed in detail. In the complex, competitive field of cardiovascular imaging, this book articulates the cutting edge in imaging vascular disease.

Martin R. Prince, MD, PhD
Professor of Radiology
Weill Medical College of Cornell University
Columbia College of Physicians and Surgeons
New York, NY, USA
Almost two decades ago, Martin Prince was able to demonstrate that the limitations of non-contrast MRA techniques could be overcome by injection of contrast agent. Subsequently, contrast-enhanced-MRA established itself in clinical practice as the standard for non-invasive depiction of almost all blood vessels. MR manufacturers have addressed the demands for faster acquisition speed to allow higher resolution imaging during the finite and relatively short imaging window of first pass MRA by a combination of faster gradients, parallel imaging techniques, and novel K-space sampling strategies. However, a perceived limit for improvement in spatial resolution, coupled with the negative impact of faster acquisition on contrast-to-noise ratios, has led to the development of »Vasovist«, the first contrast agent »tailored« to the vascular tree.

With its high relaxivity and unique pharmacokinetics, Vasovist opens up new horizons in vascular diagnostics with a prolonged imaging window, enhanced topographic information, and unrivaled new visualization options. The editors and authors have made groundbreaking contributions towards establishing MR angiography in various investigative settings, rendering it more precise and applying it for diverse indications. The work presented here is founded upon the extensive experience of the editors, and it includes a broad range of experience from other scientific working groups.

This book presents the applications of Vasovist-enhanced angiography; its potential advantages, such as the change in signal-to-noise ratio and intravascular distribution, are discussed systematically, thus giving a comprehensive overview of the basic principles and imaging techniques. Presentation of the various clinical fields is well-structured and is illustrated with excellent image material that addresses the essential questions concerning vascular diagnostics. This includes imaging of the intracranial and supra-aortic vessels and visualization of the coronary arteries, as well as of the renal and visceral vessels. Key chapters cover MR angiography of the aortoiliac and peripheral vessels. Whole-body MR angiography represents a special challenge for angiography. The new options offered by Vasovist-enhanced MR angiography are also discussed. All in all, this monograph presents the ideal opportunity to gain relevant information, read either as a review or as a detailed account of the increasing scientific potential offered by this method of vascular MR diagnosis.

What can we predict for the future? Two decades following Dr. Prince’s (then) heretical thesis that contrast-agent injection was required for dramatically improved MRA, we are now equipped with a tailored vascular contrast agent. This development parallels improvements in scanner performance, satisfies a demand for higher spatial resolution, and opens up a whole new perspective on the benefit of additional information available from the steady state images as a routine part of the study.

Prof. Dr.Dr.h.c. Maximilian F. Reiser
Department of Clinical Radiology
Director of the Department
Ludwig-Maximilians-University of Munich
Marchioninistr. 15
81377 Munich
Germany

Foreword
Introduction

The successful introduction of extracellular gadolinium-based contrast agents for contrast-enhanced MR angiography, and their wide acceptance today, raise the question of what part an intravascular contrast agent might play in diagnostic imaging. The answer lies in the capacity of an intravascular agent to give us high-level diagnostic information from first pass arterial imaging and, at the same time, to yield additional diagnostic value by allowing delayed imaging from the same contrast injection.

Clinical experience gathered since the introduction of Vasovist® (Gadofosveset) appears to provide the answer «yes»: not only is Vasovist® useful for first pass arterial imaging, but it also provides high intravascular enhancement that lasts much longer and is significantly greater than that afforded by conventional extracellular agents. Taking advantage of this effect, one can now acquire additional high-resolution images in the steady state which lead to much better delineation of vessel pathology. Steady state imaging offers the possibility of depicting the entire vascular system without relevant extravasation of the contrast medium from the intravascular space.

The extended diagnostic window of Vasovist® makes the examination more convenient because it is less dependent upon bolus dynamics. Imaging of a Gadofosveset bolus missed in the first pass examination does not require an additional injection of contrast agent. For these reasons, Vasovist® may enable physicians to detect systemic vascular disease earlier and to optimize the evaluation of therapeutic options, including percutaneous intervention and vascular surgery. In addition, imaging of the vascular system and surrounding tissues in the delayed phase appears to promise new contrast mechanisms that may improve the detection of inflammatory or malignant changes.

In summary, Vasovist® has the potential to open new horizons in diagnostic MR angiography by increasing the spatial resolution and the robustness of MRA examinations and facilitating the examination of multiple vascular beds. Vasovist® was first approved in 2005, and we are now looking at an expanded spectrum of clinical applications that has rapidly evolved and addresses the majority of clinical questions in vascular medicine and related fields. Therefore, this monograph is subdivided into chapters on technology, followed by a detailed review of the clinical fields for MR angiography with Vasovist®. With this steady increase of applications and clinical experience it is necessary to review not only the technical feasibility and reliability of the method, but also the potential additional benefit for the patient. Therefore, aspects of patient management are also analyzed, with the aim of deriving more effective and comprehensive imaging standards.

We would like to thank all of the authors for their valuable contributions and dedicated collaboration, which made this current compilation of essential aspects of Vasovist®-enhanced MR imaging possible. Also, we gratefully acknowledge the contributions of our publisher, Springer, and Mr. Eric Henquinet for his constructive, friendly and patient collaboration.

Tim Leiner (Maastricht University Hospital, The Netherlands),
Mathias Goyen (University Medical Center Hamburg-Eppendorf, Germany),
Martin Rohrer (Bayer Schering Pharma AG, Berlin, Germany),
Stefan Schönberg (University Hospital Mannheim, Germany)
Table of Contents

Foreword ... V
Foreword ... VII
Introduction ... IX

Part I Contrast Agent Properties and Technical Aspects

1 MRI Contrast Media – Introduction and Basic Properties of the Blood Pool Agent Vasovist® 3
 Martin Rohrer

2 Contrast Enhanced MRA – First Pass and Steady State 17
 Harald H. Quick

Part II Safety and Efficacy

3 Risks and Safety Issues Related to Radiological Imaging, in Particular MRI 35
 Gunnar Brix

4 Summary of Safety of Vasovist® at 0.03 mmol/kg Body Weight Dose – Clinical Data .. 43
 Matthias Voth and Andrea Löwe

5 Efficacy of Vasovist®: Overview of the Clinical Development Program 51
 Mathias Goyen

Part III Blood Pool Agents in MRA: Indications, Clinical Applications and Benefits

6 Head and Neck MRA .. 59
 Marco Essig

7 Pulmonary MRA .. 69
 Christian Fink, Ulrike Attenberger, and Konstantin Nikolaou

8 Abdominal MRA ... 81
 Henrik Michaely

9 MRA of the Peripheral Vasculature ... 93
 Tim Leiner and Jeffrey H. Maki

10 Magnetic Resonance Venography .. 115
 Giles Roditi
11 Whole-body MRA ... 131
 Harald Kramer, Maximilian F. Reiser, and Konstantin Nikolaou

12 Endoleak Imaging .. 139
 Sandra A.P. Cornelissen, Mathias Prokop, Hence J.M. Verhagen, and Lambertus W. Bartels

13 Gastrointestinal Bleeding .. 147
 Joachim Lotz

Part IV New Horizons in Vascular Diagnostics

14 Vasovist® for Ischemic and Congenital Heart Disease 159
 Sebastian Kelle, Gerald Greil, Reza Razavi, and Eike Nagel

15 Vasovist® in Brain Tumor Imaging 169
 Marco Essig and Clemens Fitzek

16 Vasovist® in Lymph Node Imaging: Present Status and Future Development 181
 Max J. Lahaye, R. Bert Jan de Bondt, Sanne M.E. Engelen, Geerard L. Beets, and Regina G.H. Beets-Tan

17 Vasovist® for Breast Cancer Recognition 193
 Joan C. Vilanova and Klaus Wasser

18 Vasovist® for Multiple Sclerosis Recognition 199
 Michael Forsting

19 Vasovist® in Interventional MR Imaging 207
 Michael Bock and Frank Wacker

20 Vasovist® in Lymphography ... 219
 Christoph U. Herborn

Part V Image Processing

21 Image Post-processing of Blood Pool MR Angiograms 227
 Joachim Graessner

Part VI Pharmacoeconomic Impact

22 Health Economic Assessment of Vasovist® – Technical, Clinical and Cost Benefits 241
 Carsten Schwenke, Susanne Kienbaum, and Karsten Bergmann

23 Patient Management and Referrals: Impact of High-Resolution Steady State MRA with Vasovist® 251
 Winfried A. Willinek and Dariusch R. Hadizadeh
List of Contributors

Ulrike Attenberger
Department of Clinical Radiology
Grosshadern Campus
Ludwig-Maximilians-University of Munich
Marchioninistrasse 15
81377 Munich
Germany

Lambertus W. Bartels
Image Sciences Institute, QS.459
University Medical Center Utrecht
Heidelberglaan 100
3584 CX Utrecht
The Netherlands

Geerard L. Beets
Department of Surgery
University Hospital Maastricht
PO Box 5800
6202 AZ Maastricht
The Netherlands

Regina G.H. Beets-Tan
Department of Radiology
Maastricht University Medical Center
Peter Debijelaan 25
6229 HX Maastricht
The Netherlands

Karsten Bergmann
Bayer Schering Pharma AG
Global Medical Affairs Diagnostic Imaging
Müllerstrasse 178
13353 Berlin
Germany

Michael Bock
German Cancer Research Center (dkfz)
Department of Medical Physics in Radiology
Im Neuenheimer Feld 280
69120 Heidelberg
Germany

Gunnar Brix
Department of Medical Radiation Hygiene and Dosimetry
Federal Office for Radiation Protection
Ingolstädter Landstrasse 1
85764 Oberschleißheim
Germany

Sandra A.P. Cornelissen
Department of Radiology/Image Sciences Institute, E01.132
University Medical Center Utrecht
Heidelberglaan 100
3584 CX Utrecht
The Netherlands

R. Bert Jan de Bondt
Department of Radiology
Maastricht University Medical Center
Peter Debijelaan 25
6229 HX Maastricht
The Netherlands

Sanne M.E. Engelen
Department of Radiology
Maastricht University Medical Center
Peter Debijelaan 25
6229 HX Maastricht
The Netherlands

Marco Essig
Department of Radiology
German Cancer Research Center (dkfz)
Im Neuenheimer Feld 280
69120 Heidelberg
Germany

Christian Fink
Department of Clinical Radiology and Nuclear Medicine
University Medical Center Mannheim
Medical Faculty Mannheim - University of Heidelberg
Theodor-Kutzer-Ufer 1-3
68167 Mannheim
Germany

Clemens Fitzek
Neuroradiological Centre
ASKLEPIOS Fachklinikum Brandenburg
Anton-Saefkow-Allee 2
14772 Brandenburg
Germany

Michael Forsting
Department of Diagnostic and Interventional Radiology and Neuroradiology
University Hospital Essen
Hufelandstrasse 55
45147 Essen
Germany

Frederik L. Giesel
German Cancer Research Center (dkfz)
Department of Radiology
Im Neuenheimer Feld 280
69120 Heidelberg
Germany

Mathias Goyen
University Medical Center Hamburg-Eppendorf
Martinistrasse 52
20251 Hamburg
Germany

Joachim Graessner
Siemens AG
Healthcare Sector MED ES BMG MR
Lindenplatz 2
20099 Hamburg
Germany

Gerald F. Greil
King’s College London
Division of Imaging Sciences
The Rayne Institute, 4th Floor, Lambeth Wing, St. Thomas’ Hospital
London SE1 7EH
United Kingdom
Dariusch R. Hadizadeh
Department of Radiology
University of Bonn
Sigmund-Freud-Strasse 25
53105 Bonn
Germany

Christoph U. Herborn
Medical Prevention Center Hamburg (MPCH)
University Medical Center Hamburg-Eppendorf
Falkenried 88
20251 Hamburg
Germany

Sebastian Kelle
German Heart Institute Berlin
Department of Internal Medicine
Division of Cardiology
Augustenburger Platz 1
13353 Berlin
Germany

Susanne Kienbaum
Bayer Schering Pharma AG
Global Health Economics, Outcomes & Reimbursement
Diagnostic Imaging
Müllerstrasse 178
13353 Berlin
Germany

Harald Kramer
Institute for Clinical Radiology
University Hospitals Munich – Grosshadern
Marchioninistr. 15
81377 Munich
Germany

Max J. Lahaye
Department of Radiology
Maastricht University Medical Center
Peter Debijelaan 25
6229 HX Maastricht
The Netherlands

Tim Leiner
Department of Radiology
Maastricht University Medical Center
Peter Debijelaan 25
6229 HX Maastricht
The Netherlands

Andrea Löwe
Bayer Schering Pharma AG
Global Medical Affairs Diagnostic Imaging
Müllerstrasse 178
13353 Berlin
Germany

Joachim Lotz
Magnetic Resonance Imaging
Department of Radiology
Hannover Medical School
Carl-Neuberg-Strasse 1
30625 Hannover
Germany

Jeffrey H. Maki
Department of Radiology
Puget Sound Veterans Administration Health Care System
Seattle, Washington, USA

Henrik J. Michaely
Department of Clinical Radiology and Nuclear Medicine
University Medical Center Mannheim
Medical Faculty Mannheim - University of Heidelberg
Theodor-Kutzer-Ufer 1-3
68167 Mannheim
Germany

Eike Nagel
King’s College London
Division of Imaging Sciences
The Rayne Institute, 4th Floor Lambeth Wing
St. Thomas’ Hospital
London SE1 7EH
UK

Konstantin Nikolaou
Department of Clinical Radiology
Grosshadern Campus
Ludwig-Maximilians-University of Munich
Marchioninistrasse 15
81377 Munich
Germany

Mathias Prokop
Department of Radiology, E01.132
University Medical Center Utrecht
Heidelberglaan 100
3584 CX Utrecht
The Netherlands

Harald H. Quick
Department of Diagnostic and Interventional Radiology and Neuroradiology
University Hospital Essen
Hufelandstrasse 55
45122 Essen
Germany

Reza Razavi
King’s College London
Division of Imaging Sciences
Floor 5 Thomas Guy House
Guy’s Hospital
London SE1 9RT
UK

Giles Roditi
Department of Radiology
Glasgow Royal Infirmary
16 Alexandra Parade
Glasgow G31 2ER
UK

Martin Rohrer
Bayer Schering Pharma AG
European Business Unit Diagnostic Imaging
Müllerstrasse 178
13353 Berlin
Germany

Carsten Schwenke
SCO:SSIS
Zöltinger Strasse 58g
13465 Berlin
Germany

Stefan O. Schoenberg
Department of Clinical Radiology and Nuclear Medicine
University Hospital Mannheim
Medical Faculty Mannheim - University of Heidelberg
Theodor-Kutzer-Ufer 1-3
68167 Mannheim
Germany
List of Contributors

Hence J.M. Verhagen
Department of Vascular Surgery
Suite H-993
Erasmus University Medical Center
PO Box 2040
3000 CA Rotterdam
The Netherlands

Joan C. Vilanova
Department of Magnetic Resonance & CT
Clinica Girona
Lorenzana, 36
17002 Girona
Spain

Matthias Voth
Bayer Schering Pharma AG
Global Medical Affairs Diagnostic Imaging
Muellerstrasse 178
13353 Berlin
Germany

Frank Wacker
Charité, Campus Benjamin Franklin Radiology and Nuclear Medicine
Hindenburgdamm 30
12200 Berlin
Germany

Klaus Wasser
Department of Clinical Radiology and Nuclear Medicine
University Hospital Mannheim
Medical Faculty Mannheim - University of Heidelberg
Theodor-Kutzer-Ufer 1-3
68167 Mannheim
Germany

Winfried A. Willinek
Department of Radiology
University of Bonn
Sigmund-Freud-Strasse 25
53105 Bonn
Germany
List of Abbreviations

2D Two-dimensional
3D Three-dimensional
3D FFT 3D Fast Fourier Transform
SSFP Steady state free precession
ADC Apparent diffusion coefficient
ALARA As low as reasonably achievable
AngioSURF Angiographic System for Unlimited Rolling Field-of-views
APAOD Atherosclerotic peripheral arterial occlusive disease
ASSET Array Spatial Sensitivity Encoding Technique
AVF Arteriovenous fistulae
BBB Blood-brain barrier
BOLD Blood oxygenation level-dependent
BPCAs Blood-pool contrast agents
CA Contrast agents
CAD Coronary artery disease
CE Contrast-enhanced
CE-MRA Contrast-enhanced magnetic resonance angiography
CENTRA Contrast-enhanced timing robust angiography
CFA Common femoral artery
CIS Clinically isolated syndrome
CKD Chronic kidney disease
CLI Critical limb ischemia
CM Contrast medium
CMR Cardiovascular MR
CNR Contrast-to-noise ratio
CNS Central nervous system
CSF Cerebrospinal fluid
CT Computed tomography
CTA Computed tomography angiography
CTEPH Chronic thromboembolic pulmonary hypertension
CVC Central venous catheters
cVR Color volume rendering
d Diameter
Da Daltons
DCE-MRI Dynamic contrast-enhanced MRI
DEALE Declining Exponential Approximation of Life Expectancy
DKG-NT Deutsche Krankenhausgesellschaft Nebenkostentarif
DOR Diagnostic odds ratio
DSA Digital subtraction angiography
DVT Deep venous thrombosis
E/P Equilibrium phase
ECCM Extracellular contrast media
ECG Electrocardiogram
EMEA European Medicines Agency
EMF Electromagnetic field
ECS Extracellular space
EUS Endoluminal ultrasonography
EVAR Endovascular ultrasonography
F/P First pass
FDA US Food and Drug Administration
FDG 18Fluorodeoxyglucose
FFT Fast Fourier-transformation
FLAIR Fluid attenuated inversion recovery
FLASH Fast low-angle shot
FMD Fibromuscular Dysplasia
FNAC Fine-needle aspiration cytology
FOV Fields-of-view
GBCA Gd-based contrast agent
GCP Good clinical practice
Gd Gadolinium
GI Gastrointestinal
GRAPPA Generalized Autocalibrating Partially Parallel Acquisitions
GRE Gradient recalled echo
H&E Histological examination
HIFU High-intensity focused ultrasound
HNSCC Head and neck squamous cell carcinoma
HSA Human serum albumin
HTA Health technology assessment
IA-DSA Intra-arterial X-ray-based digital subtraction angiography
ICH-GCP International Conference on Harmonisation on Good-Clinical-Practice
ICNRIP International Commission on Non-ionizing Radiation Protection
IEC International Electrotechnical Commission
iPAT Integrated Parallel Acquisition Techniques
IVC Inferior vena cava
IVUS Intravascular ultrasound
KTWS Klippel-Trenaunay-Weber syndrome
LAVA Liver acquisition with volume acquisition
LGB Lower GI bleeding
LITT Laser-induced thermal therapy
LNT Linear non-threshold
MAPCAs Major aorto-pulmonary collateral arteries
MBF Myocardial blood flow
MDCT Multidetector computed tomography
MIP Maximum intensity projection
MPR Multiplanar reconstructions
MR Magnetic resonance
MRA Magnetic resonance angiography
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRCA</td>
<td>Magnetic resonance coronary angiography</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
<td></td>
</tr>
<tr>
<td>MRV</td>
<td>Magnetic resonance venography</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Multi-slice</td>
<td></td>
</tr>
<tr>
<td>mSENSE</td>
<td>Modified SENSE</td>
<td></td>
</tr>
<tr>
<td>MSI</td>
<td>Maximal-signal-intensity</td>
<td></td>
</tr>
<tr>
<td>MTT</td>
<td>Mean-transit-time</td>
<td></td>
</tr>
<tr>
<td>NSF</td>
<td>Nephrogenic systemic fibrosis</td>
<td></td>
</tr>
<tr>
<td>PAD</td>
<td>Peripheral artery disease</td>
<td></td>
</tr>
<tr>
<td>PAH</td>
<td>Pulmonary arterial hypertension</td>
<td></td>
</tr>
<tr>
<td>PAOD</td>
<td>Peripheral arterial obstructive disease</td>
<td></td>
</tr>
<tr>
<td>PAT-factor</td>
<td>Parallel acquisition technique factor</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Phase-contrast</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Pulmonary embolism</td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>Perfusion reserve</td>
<td></td>
</tr>
<tr>
<td>PTA</td>
<td>Percutaneous transluminal angioplasty</td>
<td></td>
</tr>
<tr>
<td>QALY</td>
<td>Quality-adjusted-life-year</td>
<td></td>
</tr>
<tr>
<td>RARE</td>
<td>Rapid acquisition with relaxation</td>
<td></td>
</tr>
<tr>
<td>RAS</td>
<td>Renal artery stenosis</td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>Reticuloendothelial system</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Radiofrequency</td>
<td></td>
</tr>
<tr>
<td>R-factor</td>
<td>Acceleration factor</td>
<td></td>
</tr>
<tr>
<td>RIME</td>
<td>Receptor-induced magnetization enhancement</td>
<td></td>
</tr>
<tr>
<td>RVT</td>
<td>Renal vein thrombosis</td>
<td></td>
</tr>
<tr>
<td>SAE</td>
<td>Serious adverse events</td>
<td></td>
</tr>
<tr>
<td>SAR</td>
<td>Severe adverse reactions</td>
<td></td>
</tr>
<tr>
<td>SENSE</td>
<td>Sensitivity encoding</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Signal intensity</td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosus</td>
<td></td>
</tr>
<tr>
<td>SLN</td>
<td>Sentinel lymph node</td>
<td></td>
</tr>
<tr>
<td>SMA</td>
<td>Superior mesenteric artery</td>
<td></td>
</tr>
<tr>
<td>SMASH</td>
<td>Simultaneous acquisition of spatial harmonics</td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
<td></td>
</tr>
<tr>
<td>SPECT</td>
<td>Single photon emission computed tomography</td>
<td></td>
</tr>
<tr>
<td>SPGR</td>
<td>Spoiled gradient recalled echo</td>
<td></td>
</tr>
<tr>
<td>SPIO</td>
<td>Superparamagnetic iron oxide particles</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Surface rendering</td>
<td></td>
</tr>
<tr>
<td>SSD</td>
<td>Surface-shaded display</td>
<td></td>
</tr>
<tr>
<td>SSFP</td>
<td>Steady state free precession</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>Standard deviation</td>
<td></td>
</tr>
<tr>
<td>STIR</td>
<td>Short tau inversion recovery</td>
<td></td>
</tr>
<tr>
<td>SWI</td>
<td>Susceptibility-weighted imaging</td>
<td></td>
</tr>
<tr>
<td>T1-SE</td>
<td>T1-spin echo</td>
<td></td>
</tr>
<tr>
<td>T2-FSE</td>
<td>T2-fast spin echo</td>
<td></td>
</tr>
<tr>
<td>TAO</td>
<td>Thromboangiitis obliterans</td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td>Echo time</td>
<td></td>
</tr>
<tr>
<td>THRIVE</td>
<td>T1-weighted high-resolution isotropic volume imaging</td>
<td></td>
</tr>
</tbody>
</table>

TIPS = Transjugular intrahepatic portosystemic shunts
TOF = Time-of-flight
TR = Repetition Time
TREAT = Time-resolved echoshared angiography technique
TTP = Time-to-peak
UGIB = Upper GI bleeding
USg-FNAC = Ultrasound-guided fine-needle aspiration cytology
USPIO = Ultrasmall super paramagnetic iron oxide
VESPA = Venous-enhanced subtracted peak arterial
VIBE = Volumetric interpolated breath-hold examination
VQ scan = Ventilation-perfusion scintigraphy
VRT = Volume rendering technique
VSOP = Very small superparamagnetic iron oxide
XRA = X-ray angiography
τm = Average time