Extensive Air Showers
Peter K.F. Grieder

Extensive Air Showers

High Energy Phenomena
and Astrophysical Aspects

A Tutorial, Reference Manual and Data Book

Volume I
Cover

Left: Photograph of the original KASCADE air shower array at Karlsruhe, Germany, showing part of the 252 huts, distributed over an area of 200 by 200 m, that house the combined unshielded (all charged particle) and shielded (muon) detectors, and the huge central hadron calorimeter. The latter measures 320 m2, is 11.5 nuclear interaction lengths deep and consists of nine layers of lead, iron and concrete. In addition the experiment includes major muon tracking facilities. It was designed to study galactic cosmic rays at energies around the spectral knee region (PeV). In 2003 the experiment had been extended to KASCADE-Grande, covering an area of 700 by 700 m and an energy range up to 1 EeV. The experiment could then study the galactic-extragalactic transition region of the cosmic radiation. It was shut-off at the end of March 2009 (Courtesy of Forschungszentrum Karlsruhe, Germany).

Right: The Crab Nebula (catalogue designation M1, NGC 1952, Taurus A) in our own Galaxy is the remnant of the supernova SN-1054, discovered by Chinese astronomers in the year 1054 AD. I have chosen this picture as a symbolic representative of a galactic research object, reflecting the aims of the KASCADE project to study the galactic cosmic radiation. Recently, old documents had been found in European monasteries where the event SN-1054 is mentioned, thus confirming the Chinese observation. The Crab Nebula spans about 11 light-years across (3.4 pc) and is at a distance of approximately 6, 500 ± 1, 600 ly (2 ± 0.5 kpc) from our location. A Pulsar (rotating neutron star) is in its center. Both objects are emitters of gamma rays and are intensely studied by gamma ray astronomers (Courtesy of ESO).
To
Estelle
and our
Family
This book grew out of a personal need to carry out my work more efficiently. It was in the 60s when I began to develop the first highly structured air shower simulation program and was carrying out extensive air shower simulations on an almost industrial basis. The primary aim at that time was to study the systematics of hadronic interactions at the highest energies in conjunction with experimental air shower and accelerator data. This goal remains to date but today the determination of the primary mass, its energy dependence and questions related to the origin, acceleration and propagation of the most energetic cosmic rays are in the foreground.

The results obtained with the ever growing shower model that eventually grew into the program system named ASICO (Air shower SImulation and COrrelation), which later on became CORSIKA, were so manifold and rich, and covered essentially the full scope of air shower observables that it became necessary to build a library of experimental data for comparison and efficient analysis work; this was the beginning of this book. As the library grew it became evident that it could be of interest to a broader community, active in air shower research. A natural consequence was to add theoretical and tutorial sections to the various chapters, and to expand the book to a comprehensive reference manual for researchers that can also be used as a text book for the advanced student.

The data presented in these two volumes are not an all-inclusive collection. In view of the very large number of experiments that were carried out by so many research groups throughout the years it became unavoidable to take a selection for the presentation here, to compile the data and summarize results. Emphasis was therefore given to the historically as well as the contemporarily scientifically relevant information and data. The fast evolving field of ground based high energy gamma ray astronomy, which employs air shower detection techniques (air Cherenkov as well as particle detection), is only touched on the side, mostly in connection with wide-angle large aperture atmospheric Cherenkov detector arrays. Today, the field of gamma ray astronomy is essentially a separate discipline of its own, yet it remains closely related to cosmic ray and air shower research.
Readme

Organization of the Book: Extensive air showers consist of a superposition of extremely complex processes that involve different fundamental interactions and many aspects of particle physics, cosmic ray physics and astrophysics. Most observables are functions of many variables and parameters and all observables are more or less coupled with each other. This complexity makes it difficult to break up the vast contents of this book into self contained chapters that can be studied separately and in an easily digestible form. I have carefully reflected on how to structure the presentation of the contents of this book and I fully realize that subject oriented sectioning can be done in different ways. A clear structure is of basic importance for the reader and student. No matter how the structuring is carried out, a consequence of the complexity of the subject is that much cross referencing between the chapters is required to link the topics properly. Moreover, an extensive subject index is needed to navigate successfully through the volumes. Both of these requirements are fulfilled and I hope that the reader will be satisfied with the presentation and contents.

The book is divided into two parts that are in two separate volumes. Part I deals mainly with the basic theoretical framework of the processes that determine an air shower. Included are, after the general introduction chapters that describe the shower detection techniques and the basic shower reconstruction procedure using directly accessible shower parameters, followed by a summary of the relevant hadronic, electromagnetic and weak interactions and the cascade formation processes. Subsequently a detailed discussion of the longitudinal, lateral and temporal shower development, and an outline of the complexity and interrelationship of the indirectly observable process and parameters follows. Part I ends with a summary of ways and means to extract information from air shower observations on the primary radiation and presents a compilation of data of our current knowledge of the high energy portion of the primary spectrum and composition.

Part II contains mainly compilations of data of experimental and theoretical nature as well as predictions from simulations of individual air shower constituents, i.e., spectra and distributions of separate components in showers. Also included are chapters dedicated exclusively to special processes and detection methods. These comprise optical atmospheric Cherenkov and fluorescence phenomena that offer special observational windows and have proven to be successful alternatives to particle measurements because they yield three-dimensional insight into the shower process, and radio emission that may possibly develop into a useful future method of detection. I have also included a brief chapter that deals with correlations of shower observables, one that exposes the technique of air shower simulations, and the inevitable chapter on miscellaneous topics. Part II ends with a compilation of definitions and relations, and several appendices that offer useful information. For the benefit of the reader, extensive cross referencing is used that links different yet related topics for rapid access. The extensive subject index at the back of each volume covers both volumes.
Overviews: With the exception of Chap. 1 (Introduction, Facts and Phenomenology) each chapter is preceded with a brief *Overview* that summarizes the contents and offers directions where to find related topics that some readers may expect to find in the chapter but are discussed elsewhere.

Comments on Observation Levels: It will be noticed that sometimes different atmospheric depths or altitudes are specified for a particular site in different chapters and sections, and for different data sets of the same site. This reflects the actual situation in the literature. Most authors do not offer an explanation. Moreover, occasionally altitude and atmospheric overburden may seem to be in minor disparity. In some cases this may be due to seasonal changes of the barometric pressure. However, in some cases when data are being evaluated some authors take intentionally a somewhat larger overburden than would correspond to the vertical depth to account for the finite zenith-angular bin width and average zenith angle ($\theta > 0^\circ$) within the “vertical” angular bin. Whenever given I have listed the published site data that had been used in the particular case.

Comments on Nomenclature: There is sometimes some confusion in the literature when authors discuss the *shower size* because of inaccurate terminology, which may be a problem for students. Some authors use for the shower size the symbol N_e, which implies the *electron size*, but mean in fact the *total shower size* N, i.e., the total number of charged particles, N_{ch}, in a shower as it is deduced from common particle density measurements that include particles produced by interactions of neutrals (neutrons) and gamma rays (transition effects) in the detectors. In the cases where it is evident that the *all-particle shower size* is meant, I use the symbol N to avoid ambiguities.

On the other hand, in some experiments and in some work the authors clearly deal with electrons only, or chiefly electrons, and mean the actual *electron size* of a shower. In this case I have used the symbol N_e as is appropriate. It is evident that to isolate the electrons from the rest of the particles in a shower is not a trivial matter and a clear distinction is made only in a few experiments. As far as possible I have tried to call the readers attention to the problem whenever it surfaces. For the *muon size* the definition is unambiguous and I have used the symbol N_μ.

Confusing terminology is also frequently encountered in papers that deal with the attenuation of the shower rate or shower frequency and the absorption of the shower particles. Likewise there is no standard for the symbols representing the quantities.

Throughout the book I call the variation of the integral rate of showers of size $\geq N$ with zenith angle θ (due to the change of atmospheric slant depth) at fixed altitude of observation, h, the *shower rate* or *shower frequency attenuation*, and the corresponding attenuation length in the atmosphere the *shower rate attenuation length*, Λ_{att}. Analogously I call the variation of the shower size N of given rate (fixed primary energy) with atmospheric depth, X, the *shower particle absorption*, and the corresponding absorption length in the atmosphere the *shower particle absorption length*, λ_{abs}.

In the latter case, when dealing with muons I use for the *muon absorption length* the symbol $\lambda_{\mu,\text{abs}}$ and, likewise, for electrons only and hadrons only the *electron absorption length* $\lambda_{e,\text{abs}}$ and the *hadron absorption length* $\lambda_{h,\text{abs}}$, respectively. These
quantities and their reciprocals, the shower rate attenuation coefficient, μ_{att}, and the shower particle absorption coefficient, μ_{abs}, are defined in Chap. 6. A list of symbols is included at the end of the second volume.

Comments on Hadronic Interaction Models (Event Generators): I have devoted some pages for summarizing the physics and mathematics of the early phenomenological high energy hadronic interaction models and discuss the modern models that are based on partons, quark-gluon string and Regge theory more superficially, in form of a catalogue of models, offering only a very brief description of each. However, the relevant references, some of which are very extensive papers, are listed.

The reason for discussing the early models in some detail is that the original papers describing them were published in conference proceedings and journals that are not readily available, yet the models are still of some interest to many. On the other hand, the number of modern low and high energy interaction models (event generators) has grown very rapidly in recent years and they are subject to fast evolution. A detailed description would be quickly obsolete. For this reason I do not discuss them in detail.

References: The frequently used abbreviation PICRC stands for Proceedings of the International Cosmic Ray Conference and is used there where the proceedings are not part of a regular scientific journal or series.

Acknowledgements

I am particularly indebted to my dear friend and colleague, Prof. Lawrence Jones (University of Michigan, Ann Arbor, USA), for so many valuable and often hour-long discussions on many of the topics which I treat in this book. Many of our discussions took place during his frequent visits to CERN in Geneva, Switzerland, but some were conducted in more exotic places when we met at conferences around the world. I am equally indebted to Prof. Jun Nishimura (Tokyo) with whom a more than three decade-long relationship has greatly enriched my knowledge, and whose comments and suggestions I sincerely treasure. Special thanks go to Prof. Suresh Tonwar (University of Maryland, USA, formerly Tata Institute of Fundamental Research, Mumbai, India) and to Prof. Jörg Hörandel (University of Nijmegen, The Netherlands, formerly Forschungszentrum (FZ) Karlsruhe, Germany), for their valuable comments on many topics. I also want to express my sincere gratitude to the many colleagues that I have listed below, in alphabetic order, for their suggestions that were often prompted by stimulating discussions at conferences, during visits, on the phone and via e-mail.

- Dr. Antonella Castellina, University of Torino, Italy; Dr. Laurent Desorgher, University of Bern, Switzerland; Dr. Paul Doll, Dr. Andreas Haungs and Dr. Dieter Heck, all FZ Karlsruhe, Germany; Prof. Ken Honda, Yamanashi University, Japan;
Dr. Bianca Keilhauer, FZ Karlsruhe and University of Karlsruhe, Germany; Prof. Alexander Konopelko, MPI Heidelberg, Germany; Prof. Peter Minkowski, University of Bern, Switzerland; Prof. Motohiko Nagano, ICRR, Tokyo, Japan; Prof. Gianni Navarra, University of Torino, Italy; Prof. Heinigerd Rebel, FZ Karlsruhe and University of Heidelberg, Germany.

I greatly appreciate the support of the University of Bern, in particular the kind assistance which the staff of the Library of the Institute for Exact Sciences of the University has given me. I also acknowledge the valuable help of Dr. B. Housley and Dr. U. Jenzer who adapted the software to my needs, and the graphics support received from Mr. U. Lauterburg and Mr. T. Sémon.

I am grateful for the documentation and the numerous pre- and reprints that I was privileged to receive from colleagues all over the world. Last but not least I want to mention the valuable cooperation with the late Professors Koichi Suga and Tsuneo Matano that began many years ago, during my 1-year stay as guest professor at the Institute for Nuclear Studies of the University of Tokyo, that played a significant role in my scientific career.

Bern, May 2009

Peter K.F. Grieder
Contents

Part I

1 Introduction, Facts and Phenomenology .. 3
 1.1 Hadron Initiated Air Showers ... 3
 1.2 Gamma Ray and Electron Initiated Air Showers 17
 1.2.1 Gamma Ray Showers ... 17
 1.2.2 Electron Initiated Showers 23
 1.2.3 Pre-showering Effect ... 24
 1.3 Neutrino Initiated Air Showers 24
 1.4 Dust Grain Hypothesis ... 27
References .. 29

2 Shower Detection Methods and Basic Event Reconstruction 33
 2.1 Introduction ... 33
 2.2 Particle Detector Arrays .. 34
 2.3 Air Cherenkov Detector Arrays 38
 2.4 Air Fluorescence Detectors .. 39
 2.5 Radio Emission Detection ... 41
 2.6 RADAR Ranging and Detection 42
 2.7 Acoustic Detection ... 46
 2.8 Hybrid Detector Systems and Coupled Experiments 48
 2.8.1 Surface Experiments .. 48
 2.8.2 Special Detector Systems 49
 2.8.3 Coupled Surface and Underground Experiments 50
 2.9 Directly and Indirectly Accessible Shower Parameters 51
 2.10 Basic Shower Reconstruction Procedure 52
 2.10.1 Arrival Direction .. 54
 2.10.2 Shower Core Location .. 56
 2.10.3 Shower Size, Energy and Age Determination 57
 2.10.4 Array Acceptance and Detection Efficiency 58
2.11 Detector Response to Air Shower Particles and Transition Effects

- **2.11.1 Introductory Comments**
- **2.11.2 Comparison of Detector Responses**
- **2.11.3 Response of Deep Water Cherenkov Detectors**
- **2.11.4 Response of Plastic Scintillation Detectors**

References

3 Hadronic Interactions and Cascades

- **3.1 Introduction**
- **3.2 Hadronic Cross Sections**
 - **3.2.1 \((N - N)\) and \((\pi - N)\) Cross Sections and Energy Dependence**
 - **3.2.2 \((N - Air)\) and \((\pi - Air)\) Cross Sections and Energy Dependence, Glauber Concept**
 - **3.2.3 \((N - A)\), \((A - A)\), \((\pi - A)\) and \((K - A)\) Cross Sections and Energy Dependence**
- **3.3 Interaction Mean Free Path**
- **3.4 Projectile and Target Fragmentation**
- **3.5 Secondary Particle Multiplicity**
 - **3.5.1 Particle Production and Composition of Secondaries**
 - **3.5.2 Energy Dependence of Multiplicity**
 - **3.5.3 Projectile and Target Mass Dependence of Secondary Particle Multiplicity**
 - **3.5.4 Multiplicity Distribution**
- **3.6 Kinematic Aspects of Secondaries, Longitudinal and Transverse Momenta**
- **3.7 Large Transverse Momenta of Secondaries, Energy Dependence**
- **3.8 Leading Particle Effect, Elasticity and Inelasticity**
 - **3.8.1 Definition and Direct Determination of Elasticity/Inelasticity**
 - **3.8.2 Indirect Methods to Determine the Elasticity/Inelasticity**
 - **3.8.3 Energy Dependence of Elasticity/Inelasticity**
- **3.9 Correlations Between Interaction Observables**
- **3.10 Models of High Energy Interactions: I. Early Models**
 - **3.10.1 History and Background Information**
 - **3.10.2 CKP-Model of Hadron Production**
 - **3.10.3 Isobar-Fireball Model**
 - **3.10.4 Feynman Scaling Model**
 - **3.10.5 Fragmentation and Limiting Fragmentation**
- **3.11 Models of High Energy Interactions: II. Modern Models**
 - **3.11.1 General Comments**
 - **3.11.2 Parton, Mini-Jet, Quark-Gluon-String and Gribov-Regge Concepts**
3.11.3 Catalogue of Modern Shower and Interaction Models, and Event Generators 129
3.12 Hadron Cascades ... 133
3.12.1 Phenomenology of Hadron Cascade Process 133
3.12.2 Analytical Treatment of Hadron Cascades 137
References .. 139

4 Electromagnetic Interactions and Photon–Electron Cascades 147
4.1 Introduction ... 147
4.2 Definition of Frequently Used Terms 150
4.2.1 Screening Energy 150
4.2.2 Radiation Length in Matter 151
4.2.3 Critical Energy of Electrons 154
4.2.4 Scattering Energy 155
4.3 Electromagnetic Interactions Relevant for Cascade and Shower Development .. 155
4.3.1 Bremsstrahlung by Electrons 155
4.3.2 Electron Pair Production 157
4.3.3 Coulomb Scattering of Electrons 158
4.3.4 Ionization and Excitation by Electrons 159
4.3.5 Compton Effect 160
4.4 Miscellaneous EM-Interactions of Lesser or No Relevance for Cascades ... 162
4.4.1 Photo-Electric Effect 162
4.4.2 Photoneutron Reactions 162
4.4.3 Photon–Photon Interactions 164
4.4.4 Cherenkov and Transition Radiation, Radio and Fluorescence Emission 165
4.4.5 Synchrotron Radiation 166
4.4.6 Inverse Compton Scattering 167
4.4.7 Positron Annihilation 167
4.5 Processes Under Extreme Conditions 168
4.5.1 Landau-Pomeranchuk-Migdal (LPM) Effect 169
4.5.2 Magnetic Bremsstrahlung, Magnetic Pair Production and Pre-showering 171
4.6 Photon–Electron Cascade Theory 174
4.6.1 General Comments 174
4.6.2 Historical Overview 175
4.6.3 Basic Cascade Process and Phenomenology 176
4.6.4 Longitudinal Shower Development, Simple Picture 177
4.6.5 Track Length Integral 178
4.6.6 Analytical Treatment, Assumptions, Approximations and Limitations 179
4.6.7 Diffusion Equations 180
4.6.8 Solutions of the Diffusion Equations: Approximation A ... 183
4.6.9 Comments to Approximation B ... 190
4.6.10 Three-Dimensional Treatment and Energy Flow Distribution .. 190
4.6.11 Lateral Spread of Electrons and Photons ... 191
4.6.12 Additional Results of Classical Cascade Theory ... 194
4.6.13 Multi-Dimensional Descriptions of Electromagnetic Cascades Using Monte Carlo Simulations 194
4.6.14 Special Longitudinal Shower Profiles ... 195
4.7 Expressions for Practical Applications ... 196
4.7.1 Longitudinal Development, Shower Size and Age ... 196
4.7.2 Lateral Distribution of Particles, NKG-Function and Shower Age 198
References ... 200

5 Muon and Neutrino Interactions ... 205
5.1 Introduction .. 205
5.2 Muons ... 206
5.2.1 Muon Production: Main Channels ... 206
5.2.2 Photoproduction of Muon Pairs .. 207
5.2.3 Muon Energy Losses, Overview .. 208
5.2.4 Ionization Losses of Muons .. 210
5.2.5 Muon Bremsstrahlung .. 211
5.2.6 Direct Electron Pair Production by Muons .. 214
5.2.7 Direct Muon Pair Production by Muons, Muon Trident Events 219
5.2.8 Photonuclear Interactions of Muons .. 219
5.2.9 Summary of Muon Reaction Probabilities and Energy Loss 222
5.2.10 Recent Work and Developments .. 224
5.3 Neutrinos .. 226
5.3.1 Neutrino Production .. 226
5.3.2 Neutrino Reactions ... 227
5.3.3 Neutrino Cross Sections .. 228
5.3.4 Predicted High Energy Neutrino Cross Sections .. 231
5.3.5 Neutrino-Opaque Earth .. 233
References ... 233

6 Longitudinal Development and Equal Intensity Distributions 237
6.1 Introduction .. 237
6.2 Physical Processes and Concepts .. 238
6.2.1 Phenomenological Aspects ... 238
6.2.2 Theoretical Studies and Simulation Results .. 243
6.3 Attenuation of Shower Rate and Absorption of Shower Particles 247
6.3.1 General Comments and Historic Aspects 247
6.3.2 Energy Spectrum of Nucleons in the Atmosphere 248
6.3.3 Attenuation of Shower Rate 249
6.3.4 Absorption of Shower Particles 249
6.3.5 Spectral Aspects of Particle Absorption and Rate Attenuation 250
6.3.6 Methods of Measurement 251
6.4 Altitude and Zenith Angle Dependence 252
6.4.1 Altitude Dependence 252
6.4.2 Zenith Angle Dependence 254
6.5 Environmental Effects 255
6.5.1 Introduction ... 255
6.5.2 Barometric Pressure Dependence 256
6.5.3 Air Temperature, Density and Humidity Dependence 257
6.6 Data on Attenuation and Absorption, Altitude and Zenith Angle Dependence, Environmental Effects 258
6.6.1 General Data on Shower Rate Attenuation and Shower Particle Absorption 258
6.6.2 Data on Altitude Dependence 266
6.6.3 Data on Zenith Angle Dependence 271
6.6.4 Data on Environmental Effects 277
6.6.5 Mathematical Expressions and Fits 282
6.7 Equal Intensity Distributions 284
6.7.1 Introduction ... 284
6.7.2 Method of Equal Intensity Cuts 285
6.7.3 Data of Equal Intensity Distributions and Primary Mass Effects ... 288
6.7.4 Mathematical Expressions and Fits 296
References .. 297

7 Depth of Shower Maximum and Elongation Rate 303
7.1 Introduction .. 303
7.2 Methods of X_{max} Determination 304
7.3 Air Cherenkov Signatures of X_{max} 305
7.3.1 General Comments ... 305
7.3.2 Cherenkov Photon Lateral Distribution Function 308
7.3.3 Cherenkov Light Pulse Time Profile 316
7.3.4 Cherenkov Light Front Curvature, Arrival Time and Event Reconstruction 321
7.3.5 Fluctuations of Air Cherenkov Light Flux 325
7.4 Particle Signatures of X_{max} 326
7.4.1 Particle Lateral Distribution 327
7.4.2 Muon Core Angle ... 327
7.4.3 Particle Arrival Time Profile 328
8 Lateral Structure of Showers and Energy Flow

8.1 Introduction ... 359
8.2 Shower Development and Particle Spread 360
8.3 Radial Dependence of Particle Composition and Particle Energy . 363
8.4 Energy Release of Particles in the Atmosphere 366
8.5 Density Measurements and Detector Response, Zenith Angle Dependence ... 367
 8.5.1 General Aspects 367
 8.5.2 Density Measurements and Detector Response 367
 8.5.3 Zenith Angle Dependence 371
 8.5.4 Fluctuations and Accuracy of Measurements 372
8.6 Lateral Distribution of Shower Particles 373
 8.6.1 Experimental Considerations 373
 8.6.2 Measured Charged Particle Distributions 374
 8.6.3 Comments on Classical Theoretical and Refined Lateral Distribution Functions 376
8.7 Azimuthal Asymmetries of Particle Distribution 380
8.8 Geomagnetic Effects 383
8.9 Lateral Distribution of Energy Flow 385
 8.9.1 Concept of Energy Flow 385
 8.9.2 Energy Flow Data 385
8.10 Array Specific Lateral Particle Distribution Functions 387
8.11 Effects of Shower Front Structure, Time Dispersion and Delayed Particles on Density Measurements 392
8.12 Lateral Distribution of Air Cherenkov Photons 392
8.13 Mathematical Expressions and Fits 393
References .. 395

9 Temporal Structure of Showers and Front Curvature 399
9.1 Introduction ... 399
9.2 Basic Definitions of Timing Observables 401
9.3 Early Work, Basic Results and Front Curvature 402
 9.3.1 Experimental Aspects, Timing and Curvature 402
 9.3.2 Simulations and Primary Mass Signatures 404
9.4 Recent Experimental Work and Simulations 408
9.5 Special Analysis Methods .. 412
9.6 Time Dispersion and Delayed Particle Effects on Density Measurements ... 413
References .. 417

10 Derived Shower and Interaction Parameters, Refined Event Reconstruction ... 419
10.1 Introduction ... 419
10.2 Primary Energy Estimation .. 422
 10.2.1 Energy Related Observables 422
 10.2.2 Energy Estimation Using Deep Water Cherenkov Detectors ... 425
 10.2.3 Energy Estimation Using Unshielded Scintillation Detectors ... 431
 10.2.4 Energy Estimation Using the Muon or Truncated Muon Number (Size) .. 438
 10.2.5 Energy Estimation Using Atmospheric Cherenkov, Fluorescence and Radio Emission 440
10.3 Primary Mass Estimation .. 441
 10.3.1 Mass Related Observables ... 441
 10.3.2 Basic Differences Between p and Fe Showers and Kinematically Related Mass Signatures 441
 10.3.3 Low Energy Muon–Electron Correlation 445
 10.3.4 High Energy Muon, Surface Electron and Atmospheric Cherenkov Photon Correlations 451
 10.3.5 Primary Mass Sensitivity of Temporal Observables and Shower Front Structure .. 453
 10.3.6 Additional Primary Mass Related Observables 457
10.4 Shower Age .. 459
 10.4.1 Introduction .. 459
 10.4.2 Experimental Facts and Theoretical Aspects 460
10.4.3 Age Parameter Determination, Data and Implications . . . 464
10.5 Additional and Hidden Parameters 470
10.5.1 Height of First Interaction 470
10.5.2 Hadronic Interaction Parameters 474
References .. 475

11 Primary Cosmic Radiation and Astrophysical Aspects 479
11.1 Introduction .. 479
11.2 Nature of the Primary Radiation 480
11.2.1 Brief Summary .. 480
11.2.2 Classification of Nuclei 482
11.3 Low Energy Primary Radiation 482
11.3.1 Hadronic Spectra and Composition 483
11.3.2 Electrons (Negatrons and Positrons) \(e^+, e^-\) 484
11.3.3 Antimatter ... 488
11.4 Gamma Radiation .. 491
11.4.1 Diffuse Gamma Radiation 492
11.4.2 Gamma Ray Point Sources 495
11.5 Established and Predicted Neutrino Spectra 496
11.5.1 Atmospheric Background 497
11.5.2 Model Predictions .. 499
11.5.3 Neutrino Induced Air Showers 500
11.6 High Energy All-Particle Primary Spectrum 502
11.6.1 Introduction ... 502
11.6.2 Derived All-Particle Spectrum: Early Work 504
11.6.3 Derived All-Particle Spectrum: Recent Work 507
11.6.4 Comments on Primary Energy Spectra 524
11.6.5 Mathematical Expressions and Fits 525
11.7 High Energy Primary Composition 528
11.7.1 Introduction ... 528
11.7.2 Derived Primary Mass Composition 529
11.7.3 Mean Logarithmic Mass, \(\langle \ln(A) \rangle \) 538
11.8 Gamma Ray Initiated Showers 543
11.8.1 Introduction ... 543
11.8.2 Gamma Ray to Hadron Ratio 546
11.8.3 Experimental Situation and Gamma Ray-Hadron Ratio Data .. 548
11.8.4 Pre-Showering of Gamma Rays 550
11.8.5 Gamma Rays from Cygnus X-3 550
11.9 Arrival Direction and Anisotropy 551
11.9.1 Introduction ... 551
11.9.2 Magnetic Deflection 553
11.9.3 Harmonic Analysis of Data 555
11.9.4 Data on Arrival Direction and Anisotropy 557
Part II

12 Common Shower Properties, Observables and Data 613
 12.1 General Comments .. 613
 12.2 Shower Size or Number Spectrum 614
 12.2.1 Introduction 614
 12.2.2 Problems with Size Measurements 617
 12.2.3 Shower Size Spectra, Early Epoch 621
 12.2.4 Shower Size Spectra, Recent Epoch 626
 12.2.5 Mathematical Expressions and Fits 636
 12.3 Muon Size or Number Spectra 638
 12.3.1 Introduction 638
 12.3.2 Muon Size Spectra, Early Epoch 639
 12.3.3 Muon Size Spectra, Recent Epoch 641
 12.3.4 Mathematical Expressions and Fits 642
 12.4 Shower Density Spectra 646
 12.4.1 Introduction 646
 12.4.2 Phenomenological – Theoretical Aspects 648
 12.4.3 Charged Particle Density Spectra 650
 12.4.4 Muon Density Spectra 659
 12.4.5 Cherenkov Photon Density Spectra 660
 12.4.6 Mathematical Expressions and Fits 661
 12.5 Density Spectra at Fixed Core Distance, Energy Loss Spectra of Showers .. 662
 12.5.1 Introduction 662
 12.5.2 Concept of Energy Loss Density 663
 12.5.3 Calibration and Units of Energy Loss Density 664
12.5.4 Energy Loss of Showers and Energy Loss Spectra 665
12.5.5 Absorption Coefficient and Energy Loss Spectra 666
12.5.6 Air Cherenkov Photon Density and Energy Loss 667
12.5.7 Measurements and Data of $\rho(xxx)$, $Q(xxx)$ and Shower Energy Loss Spectra .. 667
12.5.8 Mathematical Expressions and Fits 674

References .. 678

13 Hadrons .. 683
13.1 Introduction .. 683
 13.1.1 Early Work ... 684
 13.1.2 Emulsion Chambers 685
 13.1.3 Recent Work ... 687
 13.1.4 Comments on Data Presentation 687
13.2 Lateral Distribution and Structure Function 688
 13.2.1 Experimental Results, Early Work 688
 13.2.2 Experimental Results, Recent Work 691
 13.2.3 Mathematical Expressions and Fits 695
13.3 Energy Spectra and Related Data 699
 13.3.1 Experimental Results, Early Work 700
 13.3.2 Experimental Results, Recent Work 705
13.4 Temporal Properties .. 707
 13.4.1 General Comments 707
 13.4.2 Simulation Results 709
 13.4.3 Experimental Exploitation and Data 710
13.5 Charge to Neutral Ratio 711
13.6 Hadron Content and Composition 715
 13.6.1 Low Energy Hadrons 716
 13.6.2 Medium and High Energy Hadrons 718
 13.6.3 Antinucleons .. 721
 13.6.4 Pions, Kaons and Charmed Particles 723
13.7 Miscellaneous Topics ... 723
 13.7.1 Single-Core Showers and Leading Particles 723
 13.7.2 Multi-Core Showers 725
 13.7.3 Transverse Momenta and $(E_h \cdot r)$ Product 726
 13.7.4 Production Height of High Energy Hadrons 734

References .. 735

14 Muons ... 741
14.1 Introduction .. 741
14.2 Lateral Structure Functions and Density Distributions 743
 14.2.1 Mathematical Lateral Structure Functions 743
 14.2.2 Simulated Lateral Distributions 746
 14.2.3 Experimental Lateral Distributions 747
14.3 Energy and Momentum Spectra 767
14.4 Temporal Properties and Muon Front Curvature 774
14.5 Charge Ratio and Geomagnetic Charge Separation 779
14.6 Height of Origin, Core Angle Distribution
and \((E_\mu \cdot r_\mu)\) Product 783
 14.6.1 General Comments on Experimental Methods 783
 14.6.2 Reconstruction Procedure 787
14.7 Multi-Muon Events and Muon Families 790
14.8 Muon Fluctuations .. 793
14.9 Genetics of Muons .. 794
References .. 798

15 Electrons and Photons .. 803
 15.1 Introduction ... 803
 15.2 Lateral Distribution Functions 806
 15.2.1 Classical Theoretical Distribution Functions 806
 15.2.2 Lagutin Distribution Function 808
 15.2.3 Simulated Lateral Distributions 809
 15.2.4 Experimental Lateral Distributions 810
 15.3 Energy Spectra, Energy Flow and Related Data 822
 15.3.1 Simulated Photon–Electron Spectra 822
 15.3.2 Measured Photon–Electron Spectra 824
 15.4 Photon–Electron and Charge Ratio, Geomagnetic Effects 828
 15.5 Temporal Properties ... 831
References .. 832

16 Atmospheric Cherenkov Radiation 835
 16.1 Introduction .. 835
 16.2 Phenomenology and Theory of Single Particle
 Cherenkov Radiation .. 837
 16.2.1 Fundamental Physical Process 837
 16.2.2 Radiation Yield and Spectral Distribution 840
 16.3 Phenomenology and Theory of Cherenkov Radiation
 in Air Showers .. 842
 16.3.1 Comments on Theoretical Studies 842
 16.3.2 Lateral and Angular Distribution 846
 16.3.3 Temporal Properties and Pulse Shape 849
 16.3.4 Light Front Curvature 852
 16.3.5 Spectrum and Polarization of Cherenkov Light 852
 16.3.6 Basic Primary Energy Estimation Using Optical
 Cherenkov Photons .. 853
 16.3.7 Modern Refined Energy Estimation and Primary
 Mass Effects .. 855
 16.3.8 Correlations Between Cherenkov Observables 857
References .. 857
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Radio Emission and Detection</td>
<td>913</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>913</td>
</tr>
<tr>
<td>18.2</td>
<td>Radio Burst Generation Processes</td>
<td>914</td>
</tr>
<tr>
<td>18.3</td>
<td>Early Work</td>
<td>915</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Initial Search for Radio Bursts and Production Mechanisms</td>
<td>915</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Discovery of Radio Bursts</td>
<td>916</td>
</tr>
<tr>
<td>18.4</td>
<td>Theoretical Considerations and Theories of Radio Emission</td>
<td>917</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Negative Charge Excess and Cherenkov Radio Emission</td>
<td>917</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Geomagnetic Charge Separation</td>
<td>919</td>
</tr>
<tr>
<td>18.4.3</td>
<td>Geoelectric Charge Separation</td>
<td>922</td>
</tr>
<tr>
<td>18.4.4</td>
<td>Transition Radiation</td>
<td>924</td>
</tr>
<tr>
<td>18.4.5</td>
<td>Geo-Synchrotron Radiation</td>
<td>925</td>
</tr>
<tr>
<td>18.4.6</td>
<td>Comments on Coherence</td>
<td>927</td>
</tr>
<tr>
<td>18.4.7</td>
<td>Polarization of the Radiation</td>
<td>927</td>
</tr>
<tr>
<td>18.5</td>
<td>Experimental Data and Phenomenology</td>
<td>928</td>
</tr>
<tr>
<td>18.5.1</td>
<td>Background</td>
<td>928</td>
</tr>
<tr>
<td>18.5.2</td>
<td>Measurements and Empirical Relations</td>
<td>929</td>
</tr>
<tr>
<td>18.5.3</td>
<td>Pulse Characteristics and Frequency Spectrum</td>
<td>936</td>
</tr>
<tr>
<td>18.6</td>
<td>Recent Work</td>
<td>936</td>
</tr>
<tr>
<td>18.7</td>
<td>Concluding Comments and Outlook</td>
<td>943</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>945</td>
</tr>
<tr>
<td>19</td>
<td>Correlations and Miscellaneous Topics</td>
<td>949</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>949</td>
</tr>
<tr>
<td>19.2</td>
<td>Electron-Muon Correlations</td>
<td>950</td>
</tr>
<tr>
<td>19.2.1</td>
<td>General Comments</td>
<td>950</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Experimental Data and Simulation Results</td>
<td>950</td>
</tr>
<tr>
<td>19.3</td>
<td>Electron-Hadron and Muon-Hadron Correlations</td>
<td>957</td>
</tr>
<tr>
<td>19.4</td>
<td>Miscellaneous Correlations</td>
<td>966</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Hadron Related Correlations</td>
<td>966</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Muon Energy – Core Distance Correlations</td>
<td>969</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Muon/Electron – Core Distance Correlations</td>
<td>969</td>
</tr>
<tr>
<td>19.4.4</td>
<td>Age Parameter Related Correlations</td>
<td>971</td>
</tr>
<tr>
<td>19.4.5</td>
<td>Long-Distance Correlated Events and Astrophysical Implications</td>
<td>971</td>
</tr>
<tr>
<td>19.5</td>
<td>Miscellaneous Topics</td>
<td>975</td>
</tr>
<tr>
<td>19.5.1</td>
<td>General Comments</td>
<td>975</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Horizontal and Upward Directed Air Showers</td>
<td>976</td>
</tr>
<tr>
<td>19.5.3</td>
<td>Muon Poor and Muon Rich Showers</td>
<td>979</td>
</tr>
<tr>
<td>19.5.4</td>
<td>Decoherence Measurements</td>
<td>979</td>
</tr>
<tr>
<td>19.5.5</td>
<td>Unusual Phenomena</td>
<td>981</td>
</tr>
<tr>
<td>19.5.6</td>
<td>Missing Energy in Air Showers</td>
<td>983</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>984</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>20</td>
<td>Air Shower Simulations</td>
<td>989</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>989</td>
</tr>
<tr>
<td>20.2</td>
<td>Monte Carlo Methods</td>
<td>991</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Simulation Strategy</td>
<td>991</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Program Architecture</td>
<td>996</td>
</tr>
<tr>
<td>20.2.3</td>
<td>Program Reliability, Overall Tests and Simulation Supervision Routines</td>
<td>1002</td>
</tr>
<tr>
<td>20.3</td>
<td>Energy Splitting, Thinning and Hybrid Methods</td>
<td>1004</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>1006</td>
</tr>
<tr>
<td>21</td>
<td>Definitions and Relations</td>
<td>1009</td>
</tr>
<tr>
<td>21.1</td>
<td>General Comments</td>
<td>1009</td>
</tr>
<tr>
<td>21.2</td>
<td>Definitions of Terms and Quantities</td>
<td>1010</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>1033</td>
</tr>
<tr>
<td>A</td>
<td>Experimental Installations</td>
<td>1035</td>
</tr>
<tr>
<td>A.1</td>
<td>EAS Arrays and Cosmic Ray Ground Facilities</td>
<td>1035</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Lists of Array and Facility Sites</td>
<td>1035</td>
</tr>
<tr>
<td>A.1.2</td>
<td>Layouts of Selected Air Shower Arrays of Past and Present</td>
<td>1040</td>
</tr>
<tr>
<td>A.2</td>
<td>Cosmic Ray Underground Installations of Past and Present</td>
<td>1064</td>
</tr>
<tr>
<td>A.2.1</td>
<td>Underground Muon and Neutrino Detectors</td>
<td>1064</td>
</tr>
<tr>
<td>A.2.2</td>
<td>Layouts of Major Underground Detectors Associated with Air Shower Arrays</td>
<td>1066</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>1067</td>
</tr>
<tr>
<td>B</td>
<td>Miscellaneous Relations, Tables, Lists and Constants</td>
<td>1071</td>
</tr>
<tr>
<td>B.1</td>
<td>Electromagnetic Interaction Related Constants and Parameters</td>
<td>1071</td>
</tr>
<tr>
<td>B.2</td>
<td>Bethe-Bloch Ionization Loss Formula</td>
<td>1072</td>
</tr>
<tr>
<td>B.3</td>
<td>The Atmosphere</td>
<td>1073</td>
</tr>
<tr>
<td>B.3.1</td>
<td>Characteristic Data and Relations</td>
<td>1073</td>
</tr>
<tr>
<td>B.3.2</td>
<td>Standard and Real Atmospheres</td>
<td>1077</td>
</tr>
<tr>
<td>B.3.3</td>
<td>Special Atmospheres and Their Variations</td>
<td>1077</td>
</tr>
<tr>
<td>B.4</td>
<td>Chapman Function</td>
<td>1081</td>
</tr>
<tr>
<td>B.5</td>
<td>Gross Transformation</td>
<td>1082</td>
</tr>
<tr>
<td>B.6</td>
<td>Energy, Particle, Photon and Magnetic Field Densities in Space</td>
<td>1083</td>
</tr>
<tr>
<td>B.7</td>
<td>Data on Cherenkov Radiation</td>
<td>1084</td>
</tr>
<tr>
<td>B.7.1</td>
<td>Cherenkov Radiation in the Atmosphere</td>
<td>1084</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>1085</td>
</tr>
</tbody>
</table>
Extensive Air Showers
Cover

Left: Partial map of the layout of the giant Auger air shower array, covering about 3,000 km², with the four Fly’s Eye type air fluorescence detectors indicated. The detector combination which is located near Malargüe, in Argentina is known under the name Auger Observatory. Its aim is to study the ultrahigh energy (UHE) component of the primary cosmic radiation beyond 10^{17} eV, the spectral ankle region around about $5 \cdot 10^{18}$ eV where the extragalactic cosmic ray component is believed to become dominant, to establish the existence of the Greisen-Zatsepin-Kuzmin (GZK) spectral cutoff expected at $\sim 10^{19}$ eV, and to search for correlations between UHE cosmic ray events and astrophysical objects in an attempt to identify objects as sources of UHE cosmic rays (Courtesy of Forschungszentrum Karlsruhe, Germany).

Right: The spiral galaxy NGC 5236 (other catalogue designations are Messier 83 or Southern Pinwheel galaxy) is located in the southern constellation Hydra. It is at a distance of approximately 15 million light years (~ 4.6 Mpc) from our location. Its size is about half of the Milky Way (Courtesy of ESO). I have chosen this picture as a symbolic representative of an extragalactic research object, reflecting the aims of the Auger project to study the extragalactic component of the cosmic radiation, and to find its sources.
To
Estelle
and our
Family
This book grew out of a personal need to carry out my work more efficiently. It was in the 60s when I began to develop the first highly structured air shower simulation program and was carrying out extensive air shower simulations on an almost industrial basis. The primary aim at that time was to study the systematics of hadronic interactions at the highest energies in conjunction with experimental air shower and accelerator data. This goal remains to date but today the determination of the primary mass, its energy dependence and questions related to the origin, acceleration and propagation of the most energetic cosmic rays are in the foreground.

The results obtained with the ever growing shower model that eventually grew into the program system named ASICO (Air shower SImulation and COrelation), which later on became CORSIKA, were so manifold and rich, and covered essentially the full scope of air shower observables that it became necessary to build a library of experimental data for comparison and efficient analysis work; this was the beginning of this book. As the library grew it became evident that it could be of interest to a broader community, active in air shower research. A natural consequence was to add theoretical and tutorial sections to the various chapters, and to expand the book to a comprehensive reference manual for researchers that can also be used as a text book for the advanced student.

The data presented in these two volumes are not an all-inclusive collection. In view of the very large number of experiments that were carried out by so many research groups throughout the years it became unavoidable to take a selection for the presentation here, to compile the data and summarize results. Emphasis was therefore given to the historically as well as the contemporarily scientifically relevant information and data. The fast evolving field of ground based high energy gamma ray astronomy, which employs air shower detection techniques (air Cherenkov as well as particle detection), is only touched on the side, mostly in connection with wide-angle large aperture atmospheric Cherenkov detector arrays. Today, the field of gamma ray astronomy is essentially a separate discipline of its own, yet it remains closely related to cosmic ray and air shower research.
Readme

Organization of the Book: Extensive air showers consist of a superposition of extremely complex processes that involve different fundamental interactions and many aspects of particle physics, cosmic ray physics and astrophysics. Most observables are functions of many variables and parameters and all observables are more or less coupled with each other. This complexity makes it difficult to break up the vast contents of this book into self contained chapters that can be studied separately and in an easily digestible form. I have carefully reflected on how to structure the presentation of the contents of this book and I fully realize that subject oriented sectioning can be done in different ways. A clear structure is of basic importance for the reader and student. No matter how the structuring is carried out, a consequence of the complexity of the subject is that much cross referencing between the chapters is required to link the topics properly. Moreover, an extensive subject index is needed to navigate successfully through the volumes. Both of these requirements are fulfilled and I hope that the reader will be satisfied with the presentation and contents.

The book is divided into two parts that are in two separate volumes. Part I deals mainly with the basic theoretical framework of the processes that determine an air shower. Included are, after the general introduction chapters that describe the shower detection techniques and the basic shower reconstruction procedure using directly accessible shower parameters, followed by a summary of the relevant hadronic, electromagnetic and weak interactions and the cascade formation processes. Subsequently a detailed discussion of the longitudinal, lateral and temporal shower development, and an outline of the complexity and interrelationship of the indirectly observable process and parameters follows. Part I ends with a summary of ways and means to extract information from air shower observations on the primary radiation and presents a compilation of data of our current knowledge of the high energy portion of the primary spectrum and composition.

Part II contains mainly compilations of data of experimental and theoretical nature as well as predictions from simulations of individual air shower constituents, i.e., spectra and distributions of separate components in showers. Also included are chapters dedicated exclusively to special processes and detection methods. These comprise optical atmospheric Cherenkov and fluorescence phenomena that offer special observational windows and have proven to be successful alternatives to particle measurements because they yield three-dimensional insight into the shower process, and radio emission that may possibly develop into a useful future method of detection. I have also included a brief chapter that deals with correlations of shower observables, one that exposes the technique of air shower simulations, and the inevitable chapter on miscellaneous topics. Part II ends with a compilation of definitions and relations, and several appendices that offer useful information. For the benefit of the reader, extensive cross referencing is used that links different yet related topics for rapid access. The extensive subject index at the back of each volume covers both volumes.
Overview: With the exception of Chap. 1 (Introduction, Facts and Phenomenology) each chapter is preceded with a brief *Overview* that summarizes the contents and offers directions where to find related topics that some readers may expect to find in the chapter but are discussed elsewhere.

Comments on Observation Levels: It will be noticed that sometimes different atmospheric depths or altitudes are specified for a particular site in different chapters and sections, and for different data sets of the same site. This reflects the actual situation in the literature. Most authors do not offer an explanation. Moreover, occasionally altitude and atmospheric overburden may seem to be in minor disparity. In some cases this may be due to seasonal changes of the barometric pressure. However, in some cases when data are being evaluated some authors take intentionally a somewhat larger overburden than would correspond to the vertical depth to account for the finite zenith-angular bin width and average zenith angle (θ > 0°) within the “vertical” angular bin. Whenever given I have listed the published site data that had been used in the particular case.

Comments on Nomenclature: There is sometimes some confusion in the literature when authors discuss the *shower size* because of inaccurate terminology, which may be a problem for students. Some authors use for the shower size the symbol N_e, which implies the *electron size*, but mean in fact the *total shower size* N, i.e., the total number of charged particles, N_{ch}, in a shower as it is deduced from common particle density measurements that include particles produced by interactions of neutrals (neutrons) and gamma rays (transition effects) in the detectors. In the cases where it is evident that the *all-particle shower size* is meant, I use the symbol N to avoid ambiguities.

On the other hand, in some experiments and in some work the authors clearly deal with electrons only, or chiefly electrons, and mean the actual *electron size* of a shower. In this case I have used the symbol N_e as is appropriate. It is evident that to isolate the electrons from the rest of the particles in a shower is not a trivial matter and a clear distinction is made only in a few experiments. As far as possible I have tried to call the readers attention to the problem whenever it surfaces. For the *muon size* the definition is unambiguous and I have used the symbol N_μ.

Confusing terminology is also frequently encountered in papers that deal with the attenuation of the shower rate or shower frequency and the absorption of the shower particles. Likewise there is no standard for the symbols representing the quantities.

Throughout the book I call the variation of the integral rate of showers of size ≥ N with zenith angle θ (due to the change of atmospheric slant depth) at fixed altitude of observation, h, the *shower rate* or *shower frequency attenuation*, and the corresponding attenuation length in the atmosphere the *shower rate attenuation length*, Λ_{att}. Analogously I call the variation of the shower size N of given rate (fixed primary energy) with atmospheric depth, X, the *shower particle absorption*, and the corresponding absorption length in the atmosphere the *shower particle absorption length*, λ_{abs}.

In the latter case, when dealing with muons I use for the *muon absorption length* the symbol $\lambda_{\mu,\text{abs}}$ and, likewise, for electrons only and hadrons only the *electron absorption length* $\lambda_{e,\text{abs}}$ and the *hadron absorption length* $\lambda_{h,\text{abs}}$, respectively. These
quantities and their reciprocals, the shower rate attenuation coefficient, μ_{att}, and the shower particle absorption coefficient, μ_{abs}, are defined in Chap. 6. A list of symbols is included at the end of the second volume.

Comments on Hadronic Interaction Models (Event Generators): I have devoted some pages for summarizing the physics and mathematics of the early phenomenological high energy hadronic interaction models and discuss the modern models that are based on partons, quark-gluon string and Regge theory more superficially, in form of a catalogue of models, offering only a very brief description of each. However, the relevant references, some of which are very extensive papers, are listed.

The reason for discussing the early models in some detail is that the original papers describing them were published in conference proceedings and journals that are not readily available, yet the models are still of some interest to many. On the other hand, the number of modern low and high energy interaction models (event generators) has grown very rapidly in recent years and they are subject to fast evolution. A detailed description would be quickly obsolete. For this reason I do not discuss them in detail.

References: The frequently used abbreviation PICRC stands for *Proceedings of the International Cosmic Ray Conference* and is used there where the proceedings are not part of a regular scientific journal or series.

Acknowledgements

I am particularly indebted to my dear friend and colleague, Prof. Lawrence Jones (University of Michigan, Ann Arbor, USA), for so many valuable and often hour-long discussions on many of the topics which I treat in this book. Many of our discussions took place during his frequent visits to CERN in Geneva, Switzerland, but some were conducted in more exotic places when we met at conferences around the world. I am equally indebted to Prof. Jun Nishimura (Tokyo) with whom a more than three decade-long relationship has greatly enriched my knowledge, and whose comments and suggestions I sincerely treasure. Special thanks go to Prof. Suresh Tonwar (University of Maryland, USA, formerly Tata Institute of Fundamental Research, Mumbai, India) and to Prof. Jörg Hörandel (University of Nijmegen, The Netherlands, formerly Forschungszentrum (FZ) Karlsruhe, Germany), for their valuable comments on many topics. I also want to express my sincere gratitude to the many colleagues that I have listed below, in alphabetic order, for their suggestions that were often prompted by stimulating discussions at conferences, during visits, on the phone and via e-mail.

Dr. Antonella Castellina, University of Torino, Italy; Dr. Laurent Desorgher, University of Bern, Switzerland; Dr. Paul Doll, Dr. Andreas Haungs and Dr. Dieter Heck, all FZ Karlsruhe, Germany; Prof. Ken Honda, Yamanashi University, Japan;
Dr. Bianca Keilhauer, FZ Karlsruhe and University of Karlsruhe, Germany; Prof. Alexander Konopelko, MPI Heidelberg, Germany; Prof. Peter Minkowski, University of Bern, Switzerland; Prof. Motohiko Nagano, ICRR, Tokyo, Japan; Prof. Gianni Navarra, University of Torino, Italy; Prof. Heinigerd Rebel, FZ Karlsruhe and University of Heidelberg, Germany.

I greatly appreciate the support of the University of Bern, in particular the kind assistance which the staff of the Library of the Institute for Exact Sciences of the University has given me. I also acknowledge the valuable help of Dr. B. Housley and Dr. U. Jenzer who adapted the software to my needs, and the graphics support received from Mr. U. Lauterburg and Mr. T. Sénon.

I am grateful for the documentation and the numerous pre- and reprints that I was privileged to receive from colleagues all over the world. Last but not least I want to mention the valuable cooperation with the late Professors Koichi Suga and Tsuneo Matano that began many years ago, during my 1-year stay as guest professor at the Institute for Nuclear Studies of the University of Tokyo, that played a significant role in my scientific career.

Bern, May 2009

Peter K.F. Grieder
Contents

Part II

12 Common Shower Properties, Observables and Data 613
 12.1 General Comments ... 613
 12.2 Shower Size or Number Spectrum 614
 12.2.1 Introduction ... 614
 12.2.2 Problems with Size Measurements 617
 12.2.3 Shower Size Spectra, Early Epoch 621
 12.2.4 Shower Size Spectra, Recent Epoch 626
 12.2.5 Mathematical Expressions and Fits 636
 12.3 Muon Size or Number Spectra 638
 12.3.1 Introduction ... 638
 12.3.2 Muon Size Spectra, Early Epoch 639
 12.3.3 Muon Size Spectra, Recent Epoch 641
 12.3.4 Mathematical Expressions and Fits 642
 12.4 Shower Density Spectra 646
 12.4.1 Introduction ... 646
 12.4.2 Phenomenological – Theoretical Aspects 648
 12.4.3 Charged Particle Density Spectra 650
 12.4.4 Muon Density Spectra 659
 12.4.5 Cherenkov Photon Density Spectra 660
 12.4.6 Mathematical Expressions and Fits 661
 12.5 Density Spectra at Fixed Core Distance, Energy Loss Spectra of Showers ... 662
 12.5.1 Introduction ... 662
 12.5.2 Concept of Energy Loss Density 663
 12.5.3 Calibration and Units of Energy Loss Density 664
 12.5.4 Energy Loss of Showers and Energy Loss Spectra 665
 12.5.5 Absorption Coefficient and Energy Loss Spectra 666
 12.5.6 Air Cherenkov Photon Density and Energy Loss 667
12.5.7 Measurements and Data of $\rho(xxx)$, $Q(xxx)$ and Shower Energy Loss Spectra 667
12.5.8 Mathematical Expressions and Fits 674
References ... 678

13 Hadrons ... 683
13.1 Introduction ... 683
 13.1.1 Early Work ... 684
 13.1.2 Emulsion Chambers ... 685
 13.1.3 Recent Work .. 687
 13.1.4 Comments on Data Presentation 687
13.2 Lateral Distribution and Structure Function 688
 13.2.1 Experimental Results, Early Work 688
 13.2.2 Experimental Results, Recent Work 691
 13.2.3 Mathematical Expressions and Fits 695
13.3 Energy Spectra and Related Data 699
 13.3.1 Experimental Results, Early Work 700
 13.3.2 Experimental Results, Recent Work 705
13.4 Temporal Properties ... 707
 13.4.1 General Comments ... 707
 13.4.2 Simulation Results ... 709
 13.4.3 Experimental Exploitation and Data 710
13.5 Charge to Neutral Ratio ... 711
13.6 Hadron Content and Composition 715
 13.6.1 Low Energy Hadrons .. 716
 13.6.2 Medium and High Energy Hadrons 718
 13.6.3 Antinucleons ... 721
 13.6.4 Pions, Kaons and Charmed Particles 723
13.7 Miscellaneous Topics ... 723
 13.7.1 Single-Core Showers and Leading Particles 723
 13.7.2 Multi-Core Showers ... 725
 13.7.3 Transverse Momenta and $(E_h \cdot r)$ Product 726
 13.7.4 Production Height of High Energy Hadrons 734
References ... 735

14 Muons ... 741
14.1 Introduction ... 741
14.2 Lateral Structure Functions and Density Distributions 743
 14.2.1 Mathematical Lateral Structure Functions 743
 14.2.2 Simulated Lateral Distributions 746
 14.2.3 Experimental Lateral Distributions 747
14.3 Energy and Momentum Spectra 767
14.4 Temporal Properties and Muon Front Curvature 774
14.5 Charge Ratio and Geomagnetic Charge Separation 779
14.6 Height of Origin, Core Angle Distribution and \((E_{\mu} \cdot r_{\mu})\) Product 783
14.6.1 General Comments on Experimental Methods 783
14.6.2 Reconstruction Procedure 787
14.7 Multi-Muon Events and Muon Families 790
14.8 Muon Fluctuations 793
14.9 Genetics of Muons 794
References .. 798

15 Electrons and Photons .. 803
15.1 Introduction .. 803
15.2 Lateral Distribution Functions 806
 15.2.1 Classical Theoretical Distribution Functions 806
 15.2.2 Lagutin Distribution Function 808
 15.2.3 Simulated Lateral Distributions 809
 15.2.4 Experimental Lateral Distributions 810
15.3 Energy Spectra, Energy Flow and Related Data 822
 15.3.1 Simulated Photon–Electron Spectra 822
 15.3.2 Measured Photon–Electron Spectra 824
15.4 Photon–Electron and Charge Ratio, Geomagnetic Effects .. 828
15.5 Temporal Properties 831
References .. 832

16 Atmospheric Cherenkov Radiation 835
16.1 Introduction .. 835
16.2 Phenomenology and Theory of Single Particle Cherenkov Radiation .. 837
 16.2.1 Fundamental Physical Process 837
 16.2.2 Radiation Yield and Spectral Distribution 840
16.3 Phenomenology and Theory of Cherenkov Radiation in Air Showers .. 842
 16.3.1 Comments on Theoretical Studies 842
 16.3.2 Lateral and Angular Distribution 846
 16.3.3 Temporal Properties and Pulse Shape 849
 16.3.4 Light Front Curvature 852
 16.3.5 Spectrum and Polarization of Cherenkov Light 852
 16.3.6 Basic Primary Energy Estimation Using Optical Cherenkov Photons 853
 16.3.7 Modern Refined Energy Estimation and Primary Mass Effects .. 855
 16.3.8 Correlations Between Cherenkov Observables 857
16.4 Gamma Ray Initiated Showers and High Energy Gamma Ray Astronomy 857
 16.4.1 General Comments 857
 16.4.2 Cherenkov Imaging Technique 859
16.5 Optical Background, Atmospheric Light Scattering, Absorption and Attenuation .. 862
16.5.1 Optical Background .. 862
16.5.2 Atmospheric Light Scattering, Absorption and Attenuation ... 862
16.6 Experimental Data and Interpretation ... 864
16.6.1 Environmental and Instrumental Aspects and Detectability ... 864
16.6.2 Lateral and Angular Distribution, Structure Functions 865
16.6.3 Temporal Properties, Pulse Shape and Light Front Curvature .. 871
16.6.4 Correlations Between Cherenkov and Particle Observables .. 872
16.6.5 Cherenkov Density Spectra .. 874
16.6.6 Miscellaneous Data .. 874
References .. 874

17 Atmospheric Fluorescence ... 879
17.1 Introduction .. 879
17.2 Fluorescence and Its Detection in E.A.S. .. 882
17.2.1 Basics and Early Work .. 882
17.2.2 Recent Fluorescence Studies, Yield 885
17.3 Optical Background, Atmospheric Scattering and Absorption 892
17.3.1 General Background .. 892
17.3.2 Night Sky Luminosity ... 893
17.3.3 Light Scattering in the Atmosphere 894
17.3.4 Light Absorption and Attenuation in the Atmosphere ... 895
17.3.5 Cherenkov Background .. 896
17.3.6 Relative Contributions of Fluorescence and Cherenkov Light to Detector Signal 897
17.4 Shower Detection and Event Reconstruction .. 900
17.4.1 Signal Level at Detector and Time Structure ... 901
17.4.2 Trajectory Reconstruction ... 902
17.4.3 Shower Profile, Primary Energy and Mass Determination ... 903
17.4.4 Trigger Criteria, Aperture and Counting Rates .. 906
17.4.5 Detector Calibration and Optimization 908
17.4.6 Atmospheric Monitoring Techniques .. 909
17.5 Measurements and Data .. 910
References .. 910

18 Radio Emission and Detection .. 913
18.1 Introduction .. 913
18.2 Radio Burst Generation Processes ... 914
18.3 Early Work .. 915
18.3.1 Initial Search for Radio Bursts and Production Mechanisms .. 915
18.3.2 Discovery of Radio Bursts .. 916
18.4 Theoretical Considerations and Theories of Radio Emission .. 917
18.4.1 Negative Charge Excess and Cherenkov Radio Emission .. 917
18.4.2 Geomagnetic Charge Separation .. 919
18.4.3 Geoelectric Charge Separation .. 922
18.4.4 Transition Radiation .. 924
18.4.5 Geo-Synchrotron Radiation .. 925
18.4.6 Comments on Coherence .. 927
18.4.7 Polarization of the Radiation .. 927
18.5 Experimental Data and Phenomenology .. 928
18.5.1 Background .. 928
18.5.2 Measurements and Empirical Relations .. 929
18.5.3 Pulse Characteristics and Frequency Spectrum .. 936
18.6 Recent Work .. 936
18.7 Concluding Comments and Outlook .. 943
References .. 945

19 Correlations and Miscellaneous Topics .. 949
19.1 Introduction .. 949
19.2 Electron-Muon Correlations .. 950
19.2.1 General Comments .. 950
19.2.2 Experimental Data and Simulation Results .. 950
19.3 Electron-Hadron and Muon-Hadron Correlations .. 957
19.4 Miscellaneous Correlations .. 966
19.4.1 Hadron Related Correlations .. 966
19.4.2 Muon Energy – Core Distance Correlations .. 969
19.4.3 Muon/Electron – Core Distance Correlations .. 969
19.4.4 Age Parameter Related Correlations .. 971
19.4.5 Long-Distance Correlated Events and Astrophysical Implications .. 971
19.5 Miscellaneous Topics .. 975
19.5.1 General Comments .. 975
19.5.2 Horizontal and Upward Directed Air Showers .. 976
19.5.3 Muon Poor and Muon Rich Showers .. 979
19.5.4 Decoherence Measurements .. 979
19.5.5 Unusual Phenomena .. 981
19.5.6 Missing Energy in Air Showers .. 983
References .. 984

20 Air Shower Simulations .. 989
20.1 Introduction .. 989
20.2 Monte Carlo Methods .. 991
20.2.1 Simulation Strategy ... 991
20.2.2 Program Architecture .. 996
20.2.3 Program Reliability, Overall Tests and Simulation
 Supervision Routines 1002
20.3 Energy Splitting, Thinning and Hybrid Methods 1004
References .. 1006

21 Definitions and Relations .. 1009
21.1 General Comments .. 1009
21.2 Definitions of Terms and Quantities 1010
References .. 1033

A Experimental Installations 1035
A.1 EAS Arrays and Cosmic Ray Ground Facilities 1035
 A.1.1 Lists of Array and Facility Sites 1035
 A.1.2 Layouts of Selected Air Shower Arrays of Past
 and Present ... 1040
A.2 Cosmic Ray Underground Installations of Past and Present 1064
 A.2.1 Underground Muon and Neutrino Detectors 1064
 A.2.2 Layouts of Major Underground Detectors Associated
 with Air Shower Arrays 1066
References .. 1067

B Miscellaneous Relations, Tables, Lists and Constants 1071
B.1 Electromagnetic Interaction Related Constants and Parameters 1071
B.2 Bethe-Bloch Ionization Loss Formula 1072
B.3 The Atmosphere ... 1073
 B.3.1 Characteristic Data and Relations 1073
 B.3.2 Standard and Real Atmospheres 1077
 B.3.3 Special Atmospheres and Their Variations 1077
B.4 Chapman Function ... 1081
B.5 Gross Transformation ... 1082
B.6 Energy, Particle, Photon and Magnetic Field Densities in Space 1083
B.7 Data on Cherenkov Radiation 1084
 B.7.1 Cherenkov Radiation in the Atmosphere 1084
References .. 1085

C List of Symbols .. 1087

D Abbreviations and Acronyms 1091

E List of Cosmic Ray Conferences 1093

Index .. 1095
Part I

1 Introduction, Facts and Phenomenology

1.1 Hadron Initiated Air Showers

1.2 Gamma Ray and Electron Initiated Air Showers

1.2.1 Gamma Ray Showers

1.2.2 Electron Initiated Showers

1.2.3 Pre-showering Effect

1.3 Neutrino Initiated Air Showers

1.4 Dust Grain Hypothesis

References

2 Shower Detection Methods and Basic Event Reconstruction

2.1 Introduction

2.2 Particle Detector Arrays

2.3 Air Cherenkov Detector Arrays

2.4 Air Fluorescence Detectors

2.5 Radio Emission Detection

2.6 RADAR Ranging and Detection

2.7 Acoustic Detection

2.8 Hybrid Detector Systems and Coupled Experiments

2.8.1 Surface Experiments

2.8.2 Special Detector Systems

2.8.3 Coupled Surface and Underground Experiments

2.9 Directly and Indirectly Accessible Shower Parameters

2.10 Basic Shower Reconstruction Procedure

2.10.1 Arrival Direction

2.10.2 Shower Core Location

2.10.3 Shower Size, Energy and Age Determination

2.10.4 Array Acceptance and Detection Efficiency

2.11 Detector Response to Air Shower Particles and Transition Effects

2.11.1 Introductory Comments

2.11.2 Comparison of Detector Responses

2.11.3 Response of Deep Water Cherenkov Detectors

2.11.4 Response of Plastic Scintillation Detectors

References

3 Hadronic Interactions and Cascades

3.1 Introduction

3.2 Hadronic Cross Sections

3.2.1 \((N - N)\) and \((\pi - N)\) Cross Sections and Energy Dependence

3.2.2 \((N - Air)\) and \((\pi - Air)\) Cross Sections and Energy Dependence, Glauber Concept
4.3 Electromagnetic Interactions Relevant for Cascade and Shower Development .. 155
 4.3.1 Bremsstrahlung by Electrons ... 155
 4.3.2 Electron Pair Production .. 157
 4.3.3 Coulomb Scattering of Electrons 158
 4.3.4 Ionization and Excitation by Electrons 159
 4.3.5 Compton Effect .. 160

4.4 Miscellaneous EM-Interactions of Lesser or No Relevance for Cascades ... 162
 4.4.1 Photo-Electric Effect .. 162
 4.4.2 Photonuclear Reactions .. 162
 4.4.3 Photon–Photon Interactions .. 164
 4.4.4 Cherenkov and Transition Radiation, Radio and Fluorescence Emission ... 165
 4.4.5 Synchrotron Radiation .. 166
 4.4.6 Inverse Compton Scattering ... 167
 4.4.7 Positron Annihilation .. 167

4.5 Processes Under Extreme Conditions .. 168
 4.5.1 Landau-Pomeranchuk-Migdal (LPM) Effect 169
 4.5.2 Magnetic Bremsstrahlung, Magnetic Pair Production and Pre-showering ... 171

4.6 Photon–Electron Cascade Theory .. 174
 4.6.1 General Comments ... 174
 4.6.2 Historical Overview ... 175
 4.6.3 Basic Cascade Process and Phenomenology 176
 4.6.4 Longitudinal Shower Development, Simple Picture 177
 4.6.5 Track Length Integral .. 178
 4.6.6 Analytical Treatment, Assumptions, Approximations and Limitations .. 179
 4.6.7 Diffusion Equations ... 180
 4.6.8 Solutions of the Diffusion Equations: Approximation A . 183
 4.6.9 Comments to Approximation B .. 190
 4.6.10 Three-Dimensional Treatment and Energy Flow Distribution .. 190
 4.6.11 Lateral Spread of Electrons and Photons 191
 4.6.12 Additional Results of Classical Cascade Theory 194
 4.6.13 Multi-Dimensional Descriptions of Electromagnetic Cascades Using Monte Carlo Simulations 194
 4.6.14 Special Longitudinal Shower Profiles 195

4.7 Expressions for Practical Applications 196
 4.7.1 Longitudinal Development, Shower Size and Age 196
 4.7.2 Lateral Distribution of Particles, NKG-Function and Shower Age .. 198

References ... 200
5 Muon and Neutrino Interactions .. 205
 5.1 Introduction ... 205
 5.2 Muons ... 206
 5.2.1 Muon Production: Main Channels 206
 5.2.2 Photoproduction of Muon Pairs 207
 5.2.3 Muon Energy Losses, Overview 208
 5.2.4 Ionization Losses of Muons 210
 5.2.5 Muon Bremsstrahlung 211
 5.2.6 Direct Electron Pair Production by Muons 214
 5.2.7 Direct Muon Pair Production by Muons, Muon
 Trident Events 219
 5.2.8 Photonuclear Interactions of Muons 219
 5.2.9 Summary of Muon Reaction Probabilities and Energy Loss ... 222
 5.2.10 Recent Work and Developments 224
 5.3 Neutrinos .. 226
 5.3.1 Neutrino Production 226
 5.3.2 Neutrino Reactions 227
 5.3.3 Neutrino Cross Sections 228
 5.3.4 Predicted High Energy Neutrino Cross Sections 231
 5.3.5 Neutrino-Opaque Earth 233

References .. 233

6 Longitudinal Development and Equal Intensity Distributions 237
 6.1 Introduction .. 237
 6.2 Physical Processes and Concepts 238
 6.2.1 Phenomenological Aspects 238
 6.2.2 Theoretical Studies and Simulation Results 243
 6.3 Attenuation of Shower Rate and Absorption of Shower Particles . 247
 6.3.1 General Comments and Historic Aspects 247
 6.3.2 Energy Spectrum of Nucleons in the Atmosphere 248
 6.3.3 Attenuation of Shower Rate 249
 6.3.4 Absorption of Shower Particles 249
 6.3.5 Spectral Aspects of Particle Absorption and Rate
 Attenuation ... 250
 6.3.6 Methods of Measurement 251
 6.4 Altitude and Zenith Angle Dependence 252
 6.4.1 Altitude Dependence 252
 6.4.2 Zenith Angle Dependence 254
 6.5 Environmental Effects ... 255
 6.5.1 Introduction ... 255
 6.5.2 Barometric Pressure Dependence 256
 6.5.3 Air Temperature, Density and Humidity Dependence ... 257
6.6 Data on Attenuation and Absorption, Altitude and Zenith Angle Dependence, Environmental Effects .. 258
6.6.1 General Data on Shower Rate Attenuation and Shower Particle Absorption .. 258
6.6.2 Data on Altitude Dependence .. 266
6.6.3 Data on Zenith Angle Dependence .. 271
6.6.4 Data on Environmental Effects .. 277
6.6.5 Mathematical Expressions and Fits .. 282
6.7 Equal Intensity Distributions .. 284
6.7.1 Introduction .. 284
6.7.2 Method of Equal Intensity Cuts .. 285
6.7.3 Data of Equal Intensity Distributions and Primary Mass Effects .. 288
6.7.4 Mathematical Expressions and Fits .. 296
References ... 297

7 Depth of Shower Maximum and Elongation Rate .. 303
7.1 Introduction .. 303
7.2 Methods of X_{max} Determination .. 304
7.3 Air Cherenkov Signatures of X_{max} .. 305
7.3.1 General Comments ... 305
7.3.2 Cherenkov Photon Lateral Distribution Function 308
7.3.3 Cherenkov Light Pulse Time Profile 316
7.3.4 Cherenkov Light Front Curvature, Arrival Time and Event Reconstruction .. 321
7.3.5 Fluctuations of Air Cherenkov Light Flux 325
7.4 Particle Signatures of X_{max} .. 326
7.4.1 Particle Lateral Distribution ... 327
7.4.2 Muon Core Angle .. 327
7.4.3 Particle Arrival Time Profile ... 328
7.4.4 Particle Shower Front Curvature ... 330
7.4.5 Fluctuations of the Particle Shower Front 331
7.5 Hybrid Signatures of X_{max} .. 333
7.5.1 Arrival Delay Between Cherenkov Light and Particle Front .. 333
7.6 Air Fluorescence Tracking of Shower Development and X_{max} .. 334
7.7 Atmospheric Effects ... 336
7.8 Elongation and Elongation Rate .. 338
7.8.1 Original Linsley Definition and Interpretation .. 338
7.8.2 Extension of the Elongation Theorem 339
7.9 Data Summary of X_{max}, Its Fluctuations, $\sigma(X_{\text{max}})$, and the Elongation Rate .. 340
7.9.1 Data on Depth of Shower Maximum, X_{max} 340
7.9.2 Data on Fluctuations of Depth of Shower Maximum,
\(\sigma(X_{\text{max}}) \) ... 346
7.9.3 Data on Elongation Rate, \(ER_{10} \) 350
7.10 Mathematical Expressions and Fits 353
 7.10.1 Air Cherenkov Related Expressions 353
 7.10.2 Particle Related Expressions 354
References .. 354

8 Lateral Structure of Showers and Energy Flow 359
 8.1 Introduction ... 359
 8.2 Shower Development and Particle Spread 360
 8.3 Radial Dependence of Particle Composition and Particle Energy . 363
 8.4 Energy Release of Particles in the Atmosphere 366
 8.5 Density Measurements and Detector Response, Zenith Angle Dependence ... 367
 8.5.1 General Aspects 367
 8.5.2 Density Measurements and Detector Response 367
 8.5.3 Zenith Angle Dependence 371
 8.5.4 Fluctuations and Accuracy of Measurements 372
 8.6 Lateral Distribution of Shower Particles 373
 8.6.1 Experimental Considerations 373
 8.6.2 Measured Charged Particle Distributions 374
 8.6.3 Comments on Classical Theoretical and Refined Lateral
 Distribution Functions 376
 8.7 Azimuthal Asymmetries of Particle Distribution 380
 8.8 Geomagnetic Effects 383
 8.9 Lateral Distribution of Energy Flow 385
 8.9.1 Concept of Energy Flow 385
 8.9.2 Energy Flow Data 385
 8.10 Array Specific Lateral Particle Distribution Functions 387
 8.11 Effects of Shower Front Structure, Time Dispersion and Delayed
 Particles on Density Measurements 392
 8.12 Lateral Distribution of Air Cherenkov Photons 392
 8.13 Mathematical Expressions and Fits 393
References .. 395

9 Temporal Structure of Showers and Front Curvature 399
 9.1 Introduction ... 399
 9.2 Basic Definitions of Timing Observables 401
 9.3 Early Work, Basic Results and Front Curvature 402
 9.3.1 Experimental Aspects, Timing and Curvature 402
 9.3.2 Simulations and Primary Mass Signatures 404
 9.4 Recent Experimental Work and Simulations 408
 9.5 Special Analysis Methods 412
9.6 Time Dispersion and Delayed Particle Effects on Density Measurements ... 413
References ... 417

10 Derived Shower and Interaction Parameters, Refined Event Reconstruction ... 419
10.1 Introduction .. 419
10.2 Primary Energy Estimation .. 422
10.2.1 Energy Related Observables 422
10.2.2 Energy Estimation Using Deep Water Cherenkov Detectors .. 425
10.2.3 Energy Estimation Using Unshielded Scintillation Detectors ... 431
10.2.4 Energy Estimation Using the Muon or Truncated Muon Number (Size) ... 438
10.2.5 Energy Estimation Using Atmospheric Cherenkov, Fluorescence and Radio Emission 440
10.3 Primary Mass Estimation .. 441
10.3.1 Mass Related Observables 441
10.3.2 Basic Differences Between p and Fe Showers and Kinematically Related Mass Signatures 441
10.3.3 Low Energy Muon–Electron Correlation 445
10.3.4 High Energy Muon, Surface Electron and Atmospheric Cherenkov Photon Correlations 451
10.3.5 Primary Mass Sensitivity of Temporal Observables and Shower Front Structure 453
10.3.6 Additional Primary Mass Related Observables 457
10.4 Shower Age ... 459
10.4.1 Introduction .. 459
10.4.2 Experimental Facts and Theoretical Aspects 460
10.4.3 Age Parameter Determination, Data and Implications .. 464
10.5 Additional and Hidden Parameters 470
10.5.1 Height of First Interaction 470
10.5.2 Hadronic Interaction Parameters 474
References ... 475

11 Primary Cosmic Radiation and Astrophysical Aspects 479
11.1 Introduction .. 479
11.2 Nature of the Primary Radiation 480
11.2.1 Brief Summary ... 480
11.2.2 Classification of Nuclei 482
11.3 Low Energy Primary Radiation 482
11.3.1 Hadronic Spectra and Composition 483
11.3.2 Electrons (Negatrons and Positrons) \((e^+, e^-) \) 484
11.3.3 Antimatter ... 488
11.4 Gamma Radiation ... 491
 11.4.1 Diffuse Gamma Radiation 492
 11.4.2 Gamma Ray Point Sources 495
11.5 Established and Predicted Neutrino Spectra 496
 11.5.1 Atmospheric Background 497
 11.5.2 Model Predictions 499
 11.5.3 Neutrino Induced Air Showers 500
11.6 High Energy All-Particle Primary Spectrum 502
 11.6.1 Introduction ... 502
 11.6.2 Derived All-Particle Spectrum: Early Work 504
 11.6.3 Derived All-Particle Spectrum: Recent Work 507
 11.6.4 Comments on Primary Energy Spectra 524
 11.6.5 Mathematical Expressions and Fits 525
11.7 High Energy Primary Composition 528
 11.7.1 Introduction ... 528
 11.7.2 Derived Primary Mass Composition 529
 11.7.3 Mean Logarithmic Mass, $\langle \ln(A) \rangle$ 538
11.8 Gamma Ray Initiated Showers 543
 11.8.1 Introduction ... 543
 11.8.2 Gamma Ray to Hadron Ratio 546
 11.8.3 Experimental Situation and Gamma Ray-Hadron Ratio Data ... 548
 11.8.4 Pre-Showering of Gamma Rays 550
 11.8.5 Gamma Rays from Cygnus X-3 550
11.9 Arrival Direction and Anisotropy 551
 11.9.1 Introduction ... 551
 11.9.2 Magnetic Deflection 553
 11.9.3 Harmonic Analysis of Data 555
 11.9.4 Data on Arrival Direction and Anisotropy 557
11.10 Time Variation of Shower Intensity 562
 11.10.1 Introduction ... 562
 11.10.2 Solar Time and Sidereal Time 564
 11.10.3 Compton-Getting Effect 565
11.11 Origin and Propagation 568
 11.11.1 Origin of Primary Radiation 568
 11.11.2 Conventional Acceleration Mechanisms 568
 11.11.3 Top-Down Models 571
 11.11.4 Correlation of Ultrahigh Energy Events with Likely Astrophysical Source Objects 571
 11.11.5 Greisen-Zatsepin-Kuzmin (GZK) Cutoff and Propagation of Hadrons in Space 573
 11.11.6 Propagation of Gamma Rays in Space 575
References .. 577

Index .. 589