COMPUTATIONAL MECHANICS

Proceedings of “International Symposium on Computational Mechanics”
July 30-August 1, 2007, Beijing, China

Editors
Z. H. Yao
M. W. Yuan
Z. H. Yao
M. W. Yuan

Computational Mechanics

Proceedings of “International Symposium on Computational Mechanics”
July 30-August 1, 2007, Beijing, China

With 261 figures
Z. H. Yao
M. W. Yuan

Computational Mechanics

Proceedings of “International Symposium on Computational Mechanics”
July 30-August 1, 2007, Beijing, China
PREFACE

During WCCM VI (2004 in Beijing, China) and WCCM VII (2006 in Los Angles, USA), we met many Chinese scholars, colleagues and friends in the field of Computational Mechanics. Actually Chinese and oversea Chinese played a very important role in computational mechanics and made great contribution in different areas. They are working hardly worldwide. So, many of them suggested to organize an International Symposium and establish own association.

At the end of the WCCM VII Congress, we have made a gathering dinner with 60 people and made a decision that we should organize a conference and start to establish our own association. The motivation is to promote the academic exchange between Chinese scholars worldwide, strengthen the collaboration and serve to the raising of China.

After the application to China Association for Science and Technology, 2007 International Symposium on Computational Mechanics was lunched in the beginning of this year and immediately obtained prompt response. As an international symposium, the papers from authors other than Chinese and oversea Chinese are also welcome. We have received about 250 abstracts from 22 countries and regions, and finally 226 papers are accepted to present at the symposium. This reflects that scholars in computational mechanics worldwide are interested in this event. The proceedings include 19 full-length papers of plenary and semi-plenary lectures, and 207 detailed abstracts, and the CD-ROM proceedings contain more than 120 full papers.

We have the honor to invite many famous experts in computational mechanics to give plenary and semi-plenary lectures in the conference. W. K. Liu, Y. B. Yang, Y. Zheng, H. W. Zhang and Q. G. Meng are the plenary speakers. A. Y. T. Leung, J. Z. Cui, J. Z. Pan, J. W. Ju, H. D. Ma, C. J. Wu, X. K. Li, G. H. Shi, G. R. Liu, X. Zhang, J. S. Chen, J. F. Liu, P. Hu, P. Chen, Ch. Zhang, Alex H. D. Cheng, S. Fu and C.-S. Chen are the semi-plenary speakers. All of them have achieved a great progress in their own fields of computational mechanics. We appreciate their outstanding contribution to the conference. This is the mark of the scientific level of this conference. We would like to thank all authors of the papers in Proceedings for their contribution as well.

Now we would like to make some definition about the Symposium and the Association which is in planning more clearly. The International Symposium on Computational Mechanics is a series of conference organized by the Chinese scholars in worldwide. It is a series of academic conferences to exchange ideas in computational mechanics. This series conference will be held in different location worldwide in a definite period, say 2 or 3 years. Chinese International Association for Computational Mechanics (tentative name) is an academic organization to promote the activities in exchange and collaboration among the Chinese scholars no matter where the organizer comes from. Any of Chinese scholars can apply to organize a symposium under the agreement with the Association.

We would like to appreciate the National Natural Science Foundation of China for their generous support.

We wish the success of the 2007 ISCM and the health of all the participants. We hope we will have a pleasant time in Beijing, July 30-August 1, 2007.

Mingwu Yuan, Professor of Peking University, Beijing, China
Zhenhan Yao, Professor of Tsinghua University, Beijing, China
ORGANIZING COMMITTEE

Chairman:

Mingwu Yuan Peking University, China

Vice-Chairman:

Hongwu Zhang Dalian University of Technology, China
Yao Zheng Zhejiang University, China
Wing Kam Liu Northwestern University, USA
Yeong-Bin Yang National Taiwan University, Taiwan, China
Andrew Y. T. Leung City University of Hong Kong, Hong Kong, China
Vai Pan Iu University of Macau, Macau, China

Secretary General:

Zhenhan Yao Tsinghua University, China

Members:

Chuin-Shan Chen (Taiwan, China) Wen Chen (China)
Zhen Chen (USA) Alex H. D. Cheng (USA)
Hanchen Huang (USA) Xu Han (China)
Ping Hu (China) Xikui Li (China)
Lijun Liu (Japan) Jane Weizhen Lu (Hong Kong, China)
Xiaoyu Luo (UK) K. M. Mok (Macau, China)
Lei Pan (USA) Dongwei Shu (Singapore)
K. Y. Sze (Hong Kong, China) Rong Tian (Japan)
Bin Tie (France) Shaoqiang Tang (China)
Dongdong Wang (China) Jane Q. Wang (USA)
Jianxiang Wang (China) X. Sheldon Wang (USA)
Feng Xiao (Japan) Jifeng Xu (USA)
Li Yuan (China) Chuanzeng Zhang (Germany)
Qing Zhang (China) Xiaoping Zheng (China)
Kun Zhou (Singapore) Zhuo Zhuang (China)

Secretariat:

Yazheng Yang Institute of Mechanics, CAS, China
Yanan Tang Institute of Mechanics, CAS, China
Yongqiang Chen Peking University, China
Yang Kuei Peking University, China
Jie Chen Institute of Mechanics, CAS, China
Hong Liu Institute of Mechanics, CAS, China
SCIENTIFIC ADVISORY BOARD

Paul T. Y. Chang Hong Kong, China
J. S. Chen USA
Gengdong Cheng China
Junzhi Cui China
H. Eliot Fang USA
Huajian Gao USA
Jianjing Jiang China
Jiann-wen Woody Ju USA
Gui Rong Liu Singapore
Tso-Chien Pan Singapore
T. H. H. Pian USA
Linxil Qian China
Dajun Wang China
Jike Wu China
Si Yuan China
Wanxie Zhong China
Jiashou Zhuo China

SPONSORS

National Natural Science Foundation of China
The Chinese Society of Theoretical and Applied Mechanics
The Chinese Association of Computational Mechanics
Dept. of Mechanics and Engineering Science, Peking University, China
College of Aeronautics and Astronautics, Tsinghua University, China
State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China
Center for Engineering and Scientific Computation, Zhejiang University, China
CONTENTS

Preface i
Conference Board and Committees ii

* denotes the presenter
in alphabet order of the regular session

Plenary Lectures
1 Multiresolution mechanics for nano/micro-structured materials
 Vernerey F. J., Liu W. K.*, Budyn E., Kim J. H., To A. 1
2 Rigid element concept for geometric nonlinear analysis of structures involving
 postbuckling response
 Yang Y. B.* 10
3 Unstructured mesh generation and its parallelization
 Zheng Y.*, Chen J. J. 22
4 Material point method for numerical simulation of failure phenomena in multiphase porous
 media

Semi-plenary Lectures
5 The atomic-scale finite element method for post-buckling of carbon nanotubes
 Leung A. Y. T.*, Guo X. 48
6 Statistical two-scale method for strength prediction of composites with random distribution
 and its applications
 Cui J. Z.*, Yu X. G., Han F., Yu Y. 60
7 A variational principle and numerical scheme for microstructural evolution of materials
 controlled by lattice diffusion
 Pan J. Z.* 80
8 Elastoplastic micromechanical damage mechanics for composites with progressive partial
 fiber debonding and thermal residual stress
 Ju J. W.*, Yanase K. 88
9 Numerical simulations of transitional and turbulent flows in plane mixing layers
 Ma H. D.*, Pan H. L., Wang Q. 93
10 3D numerical simulation of self-propelled swimming of bionic fish school
 Wu C. J.*, Wang L. 107
11 Modelling of non-isothermal non-Newtonian viscoelastic flows
 Li X. K.*, Han X. H., Duan Q. L. 122
12 Applications of discontinuous deformation analysis (DDA) to rock engineering
 Shi G. H.* 136
13 Upper and lower bounds for numerical solutions of elasticity problems using LC-PIM and
 FEM
 Liu G. R.*, Zhang G. Y. 148
14 Material point method for impact and explosion problems
 Ma S., Zhang X.* 156
Reproducing kernel partition of unity: from continuum to quantum

Chen J. S.*, Hu W. 167

SPR a new method for mesh improvement and boundary recovery

Liu J. F.*, Sun S. L., Chen Y. Q. 180

Fast inverse CAE code for sheet metal forming and its relative technique

Advances in classical subspace iteration method for eigenvalue problem

Chen P.*, Zhao Q. C., Peng W. B., Chen Y. Q., Yuan M. W. 194

Time-domain BEM analysis of cracked piezoelectric solids under impact loading

Zhang Ch.*, García-Sánchez F., Sáez A. 206

Radial basis function collocation method

Cheng A. H.-D.* 219

Modelling of Turbulent Flows at LAST, Tsinghua University

Fu S.*, Huang S. Y. 220

List of other plenary and semi-plenary lectures 221

ABSTRACTS OF REGULAR SESSIONS

Computational Failure Mechanics and Meso-Mechanics

Molecular dynamics simulations of the fracture mechanism of tetrahedral amorphous carbon

Lu Q.*, Marks N., Belytschko T. 222

Modeling of fracture process under water pressure in crack using XFEM

Fang X. J., Jin F.*, Zhang C. H. 223

Numerical study on multi-crack fracture parameters under impact loading based on the virtual crack closure technique

The fracture process simulation of the gear tooth and the advance of computational fracture mechanics

Yang S. H.* 225

On efficient evaluation of derivatives of fracture parameters using fractal finite element method

Reddy R. M.*, Rao B. N. 226

An application of stochastic meshfree method in the field of fracture mechanics

Arun C. O., Rao B. N.*, Siva Kumar M. S. 227

A relay-zone technique for computing dynamic dislocations

Tang S. Q.*, Liu W. K., Karpov E. G., Hou T. Y. 228

On the interface elements for delamination simulation of laminated plates subject to low-velocity impact

Shi G. Y.* 229

A perspective on damage and failure of composite structures based on innovative analytical and Testing methods

Xu J.*, Askari A., Weckner O. 230

Characterizing the plastic strain localization in Cosserat media

Liu X.*, Scarpas A. 231

Prediction fatigue life of dumpers with cumulative fatigue damage approach and finite element model

Cao L. J.*, Li S. J. 232
33 Simulation of fatigue process in FRP laminates with local stress concentration
 Guan Y. J.*, Wei Y. T. 233
34 Combined stochastic diffusion and mean-field model for grain growth
 Zheng Y. G.*, Zhang H. W., Chen Z. 234
35 Numerical simulation of dendritic solidification on non-graded adaptive Cartesian grids
 Chen H.*, Gibou F. 235
36 Model for Czochralski crystal growth
 Zeng Z.*, Zhang Y. X., Chen J. Q. 236

Computational Fluid Dynamics
37 Comparison of higher-order numerical schemes and several filtering methods applied to
 Navier-Stokes equations with applications to computational aeroacoustics (CAA)
38 Three-dimensional coupling compact finite difference methods for Navier-Stokes equations
 Zhang L.*, Tang D. B., Yang Y. Z. 238
39 The finite element simulation of turbulent flow with a dynamic eddy viscosity model
 Wang F. F., Wei Y. T.* 239
40 Large eddy simulation of vortex shedding due to forced vibration of cylinder
 Bai Y. G.*, Sun D. K., Lin J. H. 240
41 Modelling the compressibility effect with second-moment closure
 Fu S., Huang S. Y.* 241
42 Numerical simulation of three dimensional turbulent flow in double-suction centrifugal
 pumps
 Yang M.*, Wang F. J., Cong G. H. 242
43 Direct numerical simulation of a compressible turbulent mixing layer with combustion
 chemical reactions
44 Modelling particle deposition in a turbulent ribbed channel flow
 Khan M. A. I., Luo X. Y.*, Nicolleau F., Tucker P. G., Iacono G. 244
45 Large eddy simulation for compressible plane free shear layers transition process
 Ma H. D., Pan H. L.* 245
46 Three-dimensional dynamic LES combined with free surface Poisson equation
 Tang X. L.*, Wang F. J. 246
47 Assessment of two versions of ghost fluid method for 2D multi-medium compressible flow
 Ding Y., Yuan L.* 247
48 Development of a compressible flow analysis code with a generalized equation of state
 Terasaka H.*, Obayashi S., Yamazaki N. 248
49 Numerical simulation of electroosmotic flow through circular and triangular microchannel
 with different aspect ratios
 Gnanaraj V.*, Mohan V. 249
50 3D numerical simulation of single-phase flow in micro-channels of the small square
 cylinders in the electrolysis oxygen generation
 Li L. L.*, Zhang J. L. 250
51 Experiment study on the parameters that cause river-blocking by debris flow
 Guo Z. X.*, Huang E., Liu X. N., Cao S. Y. 251
52 A global shallow water model on the spherical-cubic grid by using CIP/multi-moment FVM
 Chen C. G.*, Xiao F. 252
53 Investigation of the local morphing's influence on the characteristics of aerodynamics for airfoil in low-Re flows

 Ran J. H.*, Liu Z. Q., Bai P. 253

54 High order multi-moment finite volume method and the applications to fluid dynamics

 Xiao F.*, Li S., Chen C. G. 254

55 Some computational issues on fluid dynamics in large hydraulic turbines

56 Effect of straightening vane on hydraulic performances of sprinkler by CFD analysis

57 Uniform weighted compact and non-compact scheme for shock entropy interaction

 Xie P., Liu C. Q.* 257

58 Numerical simulation of the evolution of focusing shock wave in extracorporeal shock wave lithotripsy by using space-time conservation element and solution element scheme

59 Numerical study of flow structures and the intensity of segmentation of impinging jets in various Y typed micro mixers

 Guan H.*, Wu C. J., Tu S. T. 259

60 Moving grid-multigrid fictitious boundary method for the simulation of viscous flow past many moving disks

 Wan D. C.* 260

61 Mathematical and numerical analysis of thermally coupled quasi-Newtonian flow obeying a power law

 Zhu J.*, Yu X. J. 261

62 Numerical simulation of traveling bubble cavitating flow in a Francis turbine

 Zhou L. J., Wang Z. W.* 262

63 Traffic jam formation in traffic flow on a harbor tunnel

 He H. D.*, Lu W. Z., Dong L. Y., Dai S. Q. 263

Computational Structural Mechanics and Engineering

64 Area-load explanation, locating and estimating Min (Max) of BM

 Liu G. H.*, Zhang Y. 264

65 Inelastic analysis of steel frame structures with the member endochronic model

 Zhang S. Y.* 265

66 Simulation for the collapse of RC frame tall buildings under earthquake disaster

 Miao Z. W.*, Lu X. Z., Ye L. P., Ma Q. L. 266

67 Nonlinear finite element analysis for a prestressed continuous rigid frame concrete bridge

 Huang S. N.*, Lu X. Z., Ye L. P., Liu Y. K. 267

68 Estimating seismic energy in frame structure with odd exponent wavelet

69 Applications of the integral operators method in beam-column element

 Xie J. Z.* 269

70 Structural design of the large-span suspen-dome

 Zhang Z. H.*, Cao Q. S., Fu X. Y., Dong S. L. 270

71 A new rod eigenelement and its application to structural static and dynamic analysis

 Xing Y. F.*, Yang Y. 271

72 A new method for solving solid structures

 Ke J.* 272
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Research on application of reduced order model in wind-induced vibration of long-span structures</td>
<td>Sun F. J.*, Zhang D. M., Yin Z. X., Cao Q. K.</td>
</tr>
<tr>
<td>74</td>
<td>Application of proper orthogonal decomposition method in wind field simulation for roof structures</td>
<td>Han D. J.*, Li J.</td>
</tr>
<tr>
<td>75</td>
<td>Mechanical properties of super honeycomb structures</td>
<td>Wang M., Qiu X.*, Zhang X.</td>
</tr>
<tr>
<td>76</td>
<td>Load capacity analysis of laminated composite plates with delamination under static loading</td>
<td>Liu Y. D.*, Chen H. R.</td>
</tr>
<tr>
<td>77</td>
<td>Reliability based approach to determine design ice condition for dynamic performance assessment of jacket platforms</td>
<td>Li G.*, Liu X., Yue Q. J.</td>
</tr>
<tr>
<td>78</td>
<td>The application of vector form intrinsic finite element method to template offshore structures</td>
<td>Lee H.-H.*, Tseng K.-W., Chang P.-Y.</td>
</tr>
<tr>
<td>79</td>
<td>Reliable and efficient modeling by adaptive methods for structural mechanics and its industrial applications</td>
<td>Tie B.*</td>
</tr>
<tr>
<td>80</td>
<td>A viscoelastic analysis of rubber preloaded structures</td>
<td>Xu B.*, Zong X., Yu S. R., Li W. F., Fan Z. G.</td>
</tr>
<tr>
<td>82</td>
<td>A Practical Method to Determine Influence Surfaces using Commercial Software</td>
<td>Kong J.*</td>
</tr>
<tr>
<td>83</td>
<td>Concrete, Soil and Rock</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Seismic response of a concrete viaduct reinforced by steel braces</td>
<td>Yin Y. B.*, Sun S. M.</td>
</tr>
<tr>
<td>84</td>
<td>Application of digit image processing technique to the analysis of concrete damage process</td>
<td>Li J., Wu X.*</td>
</tr>
<tr>
<td>85</td>
<td>Study on the macro-meso constitutive law of concrete material</td>
<td>Zhang Q.*, Xia X. Z.</td>
</tr>
<tr>
<td>86</td>
<td>3-D FEM emulation computation on surrounding concrete of steel spiral case keeping internal pressure during construction</td>
<td>Cui J. H.*, Su H. D.</td>
</tr>
<tr>
<td>87</td>
<td>Modeling of stresses and strains in bonded concrete overlays subject to differential volume changes</td>
<td>Zhou J.*, Ye G., Schlangen E., van Breugel K.</td>
</tr>
<tr>
<td>88</td>
<td>Fiber beam element model for the collapse simulation of concrete structures under fire</td>
<td>Chen S. C., Lu X. Z.*, Ren A. Z., Jiang J. J.</td>
</tr>
<tr>
<td>90</td>
<td>A simple soil model for complex loadings</td>
<td>Wang Z. L., Ma F. G.*</td>
</tr>
</tbody>
</table>
Research on design of model in shaking table test considering soil-structure interaction
Shi X. J.*, Yue Q. X., Li J. 291

A meshfree particle method to simulate discontinuous rock mass
Ma G. W.*, Wang X. J. 292

Rock block identification and 3D simplex integration
Song J. S.*, Ohnishi Y., Nishiyama S. 293

Study on mechanical effects of shrub roots for slope protection
Hu X. S.*, Chen G. C., Li G. R., Zhu H. L., Mao X. Q. 294

Numerical simulation test on mechanical characteristics of coarse granular materials by discontinuous deformation analysis
Guo P. X., Lin S. Z.* 295

A numerical approach for the simulation of cementitious materials
Yang W. G.*, Guo Z. Q. 296

Strength reduction method on stability analysis of tunnel

Numerical simulation and analyze for centrifuge model tests
Tang L. X.*, Tang C. A. 298

Constitutive Relations, Material Model and Computational Material Science

Constitutive modeling of advanced high-strength steels for springback simulation
Xia Z. C.* 299

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading
Guo Z. Q.*, Sluys L. J. 300

FE realization of a thermo-visco-plastic constitutive model using VUMAT in ABAQUS/Explicit program
Gao C. Y.* 301

Prediction for mechanical properties of core-shell particle-filled polymers via statistical two-scale method
Han F.*, Cui J. Z., Yu Y. 302

Various formulations for determining displacements and stresses in wound rolls
Liu M. L.* 303

The effective modulus of particle modified polymer composites with imperfect interface
Xie G. L.*, Zhang P., Gong S. G. 304

Discussion of two crystal plasticity models coupling with anisotropic damage for finite deformations
Liu M. H.*, Feng L. 305

Global model for 8-inch Czochralski silicon crystal growth process
Chen Q. S.*, Deng G. Y. 306

Numerov calculation of Al$_x$Ga$_{1-x}$N/GaN heterostructure
Zhang K. X.*, Zhang J. N. 307

A numerical implementation of a 3D crystal plasticity model for directionally solidified Ni-based superalloy
Nie J. F., You X. C.*, Zhuang Z., Li X. D. 308

A three-layer model of the mechanical behaviour of blood vessel walls
Zhang H.*, Zhang H. W., Gu Y. X 309
Engineering Applications

110 Field measurement and numerical simulation of hydraulic transients for reversible pump-turbine units with MGV device

111 On the dynamic behaviour of chorded mitral valves

112 Intensity field design for pistons and cylinder heads in the laser induced thermal loading system

Song H. W.*, Yu G., Tan J. S., Di J. B. 312

113 Analysis of pre-tightened bolt connections under eccentric load

114 Air bearing slider simulation and modeling for hard disk drives with ultra-low flying heights

Shi B. J., Shu D. W.*, Gu B., Parlapalli M. R., Della C. N., Ng Q. Y. 314

115 The influence of charged raindrops on remote sensing in rain

He Q. S.*, Zhou Y. H. 315

116 Application of GIS technique in three-dimensional slope stability analysis

Qiu C.*, Xie M. W., Esaki T. 316

Inverse and Coupling Problems

117 Back-calculation of material properties of asphalt concrete using the APA test

Wang Y. P., Wang L. B.* 317

118 Simulation of crack identification in elastic solids using surface signals

Wang X. D.*, Huang G. L. 318

119 Parameter identification method for airport pavement system

Ge H. H.*, Xu J. Y. 319

120 Inverse formulation for geometrically exact stress resultant shell

Zhou X. L.*, Lu J. 320

121 Pointwise estimation of material parameters for heterogeneous nonlinear hyperelastic membranes: computational development

Lu J., Zhao X.* 321

122 Multi-type sensor placement design for damage detection

123 Computational inverse procedure for identification of structural dynamic loads

Liu J.*, Han X. 323

124 Accurate and efficient prediction of acoustical performance of noise barriers against transport noise pollution

125 Flutter derivative identification using turbulence modelling

126 A localized variational principle and hybrid element formulas for fluid-structure coupling harmonic vibrations

Su H. D.*, Huang Y. Y. 326

127 Numerical analyses of static and dynamic aeroelasticity based on unstructured CFD/CSD solver

Yang G. W.*, Zheng G. N., Chen D. W. 327

128 Coupled fluid-structure analysis of explosive driven fragmentation of cylindrical shell

Huang X. C.* 328
129 Deformation of an elastic thin plate using ULE in lateral flow of fluid

Hao Y. J.*, Bai X. Z., Bo X. H. 329

Mesh Generation, Software and High Performance Computing

130 Analysis of high performance parallel algorithms and developable environment for nonlinear mechanics of static structures

Zong X.*, Mo J., Zhang D. M., Xu B. 330

131 A parallel 3D Delaunay mesh generation method based on affected zone

Chen M.-B.*, Yang C.-H. 331

132 Grid subdivision algorithm based on the Youngs’ interface reconstruction algorithm

Ning J. G., Ma T. B.*, Liu C., Wang C. 332

133 Fully nonlinear ship-wave computations using unstructured mesh

Wang Q. X.* 333

134 Optimizing dynamic responses of structures using Isight to integrate NASTRAN

Jian K. L.*, Xiao F. H., Chen Y. 334

135 Integrated numerical analysis system for RSS21 software: (3) GUI of FFB

Chen J.*, Terasaka H., Kurihara M., Guo Y. 335

136 Fit for purpose? The effective use of numerical simulation: a review of current status and future needs, quality assurance, education and training

Morris T.*, McCulloch C. F. 336

Meshless/Meshfree Methods and Dimension-Reduction Methods

137 Element free method for plane stress mode I crack with couple stress effect

138 Discrete gradient finite point method

Lu J.*, Qian J. 338

139 A modified meshless local Petrov-Galerkin method for nearly incompressible rubber materials

Hu D. A.*, Han X., Long S. Y. 339

140 A variational mesh-free method based on discretization via directional derivatives

Liu G. L.*, Ye Z. Q., Chen B. 340

141 The least-squares meshfree finite element method

Jiang B. N.*, Liao G. J. 341

142 Numerical modelling of fracture in particulate composites using SPH method

Chen Y. Q.*, Kulasegaram S. 342

143 A new SPH equation including variable smoothing lengths aspects and its implementation

Qiang H. F.*, Gao W. R. 343

144 Heat transfer applications of meshless local Petrov-Galerkin (MLPG) method during plasma spray

145 Meshless local Petrov-Galerkin (MLPG) “mixed” approach for solving incompressible N-S equations

Gao L. F.*, Yao Z. H. 345

146 Meshfree analysis of thin plates using an improved stabilized conforming integration method

Wang D. D.*, Chen J.-S. 346

147 Kernel radial basis functions

Chen W.*, Wang H., Qin Q. H. 347
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>Lower bound shakedown analysis by using the EFG method and nonlinear programming</td>
<td>Chen S. S., Liu Y. H.*, Cen Z. Z.</td>
<td>348</td>
</tr>
<tr>
<td>149</td>
<td>An efficient meshless method for simulating wave motions in saturated porous media</td>
<td>Chen S. L.*, Li Y. X., Liao Z. P.</td>
<td>349</td>
</tr>
<tr>
<td>150</td>
<td>The meshless local Petrov-Galerkin (MLPG) approach with couple-stress</td>
<td>Wang M.*, Wang X. P.</td>
<td>350</td>
</tr>
<tr>
<td>151</td>
<td>Adaptive meshless LBIEM for the analysis of 2D elasticity problems</td>
<td>Chen H. B.*, Fu D. J., Zhang P. Q.</td>
<td>351</td>
</tr>
<tr>
<td>152</td>
<td>Meshless virtual boundary method and its applications</td>
<td>Sun H. T.*</td>
<td>352</td>
</tr>
<tr>
<td>154</td>
<td>Boundary element analysis of the dual-cavity tunneling seepage</td>
<td>Yang D. Q.*, Chen E. Y., Zhao G. P.</td>
<td>354</td>
</tr>
<tr>
<td>155</td>
<td>The boundary element analysis of bloodstream in the bifurcation deformity blood vessel</td>
<td>Peng H. M.*, Yang D. Q., Yang X. Y.</td>
<td>355</td>
</tr>
<tr>
<td>156</td>
<td>Boundary element method analysis of hydrodynamic characteristics of the three-leaf dislocated floating-ring bearing</td>
<td>Xing P. L.*, Huang M. H., Yang D. Q.</td>
<td>356</td>
</tr>
<tr>
<td>157</td>
<td>An effective technique for reducing internal points in RIBEM for nonhomogeneous media</td>
<td>Gao X. W.*</td>
<td>357</td>
</tr>
<tr>
<td>158</td>
<td>Simulation of CNT composites using fast multipole BEM</td>
<td>Yao Z. H.*, Xu J. D., Wang H. T.</td>
<td>358</td>
</tr>
<tr>
<td>159</td>
<td>Application of boundary element method to static fluid-solid coupling problems</td>
<td>Zheng X. P.*, Wang B., Yao Z. H.</td>
<td>359</td>
</tr>
<tr>
<td>160</td>
<td>An improved approach for computing the Green functions of the Helmholtz equation in the 2D impedance half space</td>
<td>Chen Z.-S.*, Waubke H.</td>
<td>360</td>
</tr>
</tbody>
</table>

Multiscale and Multi-Physics Computation

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>Recent advances in multiscale simulation of UNCD strength</td>
<td>Shen L., Chen Z.*</td>
<td>361</td>
</tr>
<tr>
<td>162</td>
<td>Two-scale analysis for dynamic coupled thermoelasticity problems of periodical composite materials</td>
<td>Wan J. J.*, Cui J. Z., Su F.</td>
<td>362</td>
</tr>
<tr>
<td>163</td>
<td>Multiscale analysis and numerical simulations for stability of incompressible periodic flow of Maxwell fluid</td>
<td>Zhang L.*, Ouyang J.</td>
<td>363</td>
</tr>
<tr>
<td>164</td>
<td>The multi-scale finite element computation for piezoelectricity problem in a periodic domain with the mixed boundary conditions</td>
<td>Feng Y. P.*, Deng M. X.</td>
<td>364</td>
</tr>
<tr>
<td>165</td>
<td>Development of multi-scale computation framework to investigate the failure behavior of the materials</td>
<td>Zhuang Z.*, Liu Z. L., You X. C., Guo Y.</td>
<td>365</td>
</tr>
<tr>
<td>166</td>
<td>Computational multiscale analysis for interfacial behavior of bio-layers and medical implants</td>
<td>Suddaby D., Wise Z, Fan J. H.*</td>
<td>366</td>
</tr>
</tbody>
</table>
167 Magneto-elastic-plastic buckling/snapping and bending of cantilever ferromagnetic rectangular plates

Gao Y. W.* 367

168 Three-dimensional mixed-mode crack growth modeling in electro-magneto-thermo-elastic coupled viscoplastic multiphase composites by time-domain hypersingular integral equation method

Zhu B. J.*, Qin T. Y. 368

169 Scale gap, scale invariance and multiphysical modeling

Cao L. Q.*, Luo J. L. 369

Nano-Mechanics and Simulation

170 Computer simulation on structures of single walled carbon nanotubes

Yang J. X.*, Wang X. Q., Lei F. 370

171 Buckling behaviors of double-walled carbon nanotubes with abnormal interlayer distances

172 Relaxation of a rotational defect in a titanium nanocylinder

Wu M. S.*, Zhou K., Nazarov A. A. 372

173 Parametric atomistic analysis of nano-scale metal plasticity

McEntire R. S., Shen Y.-L.* 373

174 Manifestation of strain gradients in nanostructural vibration

Sun L., Wang J., Han R. P. S.* 374

Numerical Methods with High Accuracy and Efficiency

175 Highly accurate numerical solutions for potential problem and singular problem in arbitrary plane domain

Liu C.-S.* 375

176 On simple and efficient shell and solid finite elements with rotational degrees of freedom

To C. W. S.* 376

177 Transverse vibration analysis of an arbitrarily-shaped membrane by the weak-form quadrature element method

Zhong H.*, Gao M. 377

178 A new particle model for fabric drap simulation

Sze K. Y.*, Liu X. H. 378

179 Harmony element method for time and space domain

Zhong W. X., Gao Q.* 379

180 Some recent advances on the quadrilateral area coordinate method

Cen S.*, Chen X. M., Fu X. R., Long Y. Q. 380

181 Method of volume coordinates — from tetrahedral to hexahedral elements

182 Quadrilateral axisymmetric elements formulated by the area coordinate method

Guan N. X.*, Cen S., Chen X. M. 382

183 A quadrilateral membrane hybrid stress element with drilling degrees of freedom

Wang A. P.*, Tian Z. S. 383

184 Special hybrid multilayer finite elements for 3-D stress analyses around holes in laminated composites

Yang Q. P.*, Tian Z. S. 384

185 An investigation of interlaminar response for laminated composites using a nonlinear hybrid stress element

186 A hybrid membrane element based on the Hamilton variational principle
 \textit{Ju W.*}, \textit{Long Y. Q.}, \textit{Fu X. R.}, \textit{Cen S.} 386

187 A symplectic scheme on numerical study for BEC
 \textit{Tian Y. M.*}, \textit{Qin M. Z.}, \textit{Zhang Y. M.}, \textit{Ma T.} 387

188 A view on manifold method comparing with finite element method
 \textit{Chen G.*} 388

189 An improved finite difference scheme for solving the equation of filtration type in porous
 textiles with phase change materials
 \textit{Zhu Q. Y.*} 389

190 \textit{C}^{1} \textit{natural neighbor interpolant based on the extended Delaunay triangulation}

191 Analysis of sliding cable element

192 Study of the analytical trial functions

193 Structure-preserving finite element method on topologically nontrivial domain
 \textit{Shang Z. J.}, \textit{Song S. H.*} 393

Numerical Simulation of Contact Problems

194 Numerical simulation of surface contact and mixed lubrication — deterministic approach
 vs. stochastic approach
 \textit{Zhu D.*} 394

195 Elasto-plastic rough surface contact analysis for the effects of material properties,
 topographical characteristics and load

196 Contact state analysis using NFIS & SOM
 \textit{Owladeghaffari H.*} 396

197 Frictional slide contact element for elastomeric bearings of prestressed shallow reticulated
 shells during construction
 \textit{Xiao J. C.*}, \textit{Mao J. Y.}, \textit{Liu Y.} 397

198 Application of 3D coupled joint element in contact erosion simulation
 \textit{Luo Y. L.*}, \textit{Peng H.} 398

199 Numerical analysis of car disc brake squeal considering thermal effects
 \textit{Li L. J.}, \textit{Ouyang H. J.*}, \textit{AbuBakar A. R.} 399

Sound, Vibration, Impact and Wave Propagation

200 An efficient method for acoustic response prediction in the mid-frequency range
 \textit{Peng W. C.*}, \textit{He Z.}, \textit{Wang J. Q.} 400

201 Free vibration of liquid-storage tanks based on bending-shearing model
 \textit{Cheng X. S.*}, \textit{Du Y. F.}, \textit{Li H.}, \textit{Shi X. Y.} 401

202 The nonlinear vibration of axially moving beam impacted by high-speed moving load
 \textit{Guo B. Q.*}, \textit{Xie S. L.}, \textit{Zhang X. N.} 402

203 Transient analysis of functionally graded materials plate using reduced-basis methods
 \textit{Huang Y. H.*}, \textit{Han X.} 403

204 Nonlinear vibration and bifurcation analysis for a rotor with seal and bearing excitations
 \textit{Wang Y. F.*}, \textit{Li Y.}, \textit{Wang X. Y.} 404

205 Vibration control of honeycomb sandwich panel using multi-layer piezoelectric actuator
 \textit{Luo Y. J.}, \textit{Xie S. L.}, \textit{Zhang X. N.*} 405
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>Vibration analysis of functionally graded piezoelectric annular sectorial plates</td>
<td>Nie G. J.*, Zhong Z.</td>
</tr>
<tr>
<td>207</td>
<td>Numerical analysis for vibration of magnetostrictive actuator</td>
<td>Shang X. C.*, Qin L. P., Liu L. M.</td>
</tr>
<tr>
<td>208</td>
<td>A practical solution of the random eigenvalue problems using factorized decomposition technique</td>
<td>Chowdhury R.*, Rao B. N., Prasad A. M.</td>
</tr>
<tr>
<td>210</td>
<td>Study on mechanism for line spectrum reduction in nonlinear vibration isolation system</td>
<td>Wang J. J.*, Liu S. Y., Zhu S. J.</td>
</tr>
<tr>
<td>211</td>
<td>Modal analysis of transient ultrasonic guided waves in a cylinder</td>
<td>Stoyko D. K.*, Popplewell N., Shah A. H.</td>
</tr>
<tr>
<td>212</td>
<td>T-matrix method of elastic wave scattering on imperfect interface</td>
<td>Wei P. J.*, Zhang L.</td>
</tr>
<tr>
<td>213</td>
<td>Numerical study of wave propagation and reflection in semi-infinite long piezoelectric Cylinders</td>
<td>Bai H.*</td>
</tr>
<tr>
<td>214</td>
<td>Analysis of dielectric layer PBG structure using precise integration</td>
<td>Yang H. W.*, Zhong W. X., Sui Y. K.</td>
</tr>
<tr>
<td>215</td>
<td>Numerical modeling of FMLs subjected to a projectile impact</td>
<td>Guan Z. W.*, Cantwell W. J.</td>
</tr>
<tr>
<td>216</td>
<td>Highly efficient atmospheric turbulence response analysis of composite aircraft wings using pseudo-excitation method</td>
<td>Dai X. J., Tuo C. Z., Sun D. K., Lin J. H.*</td>
</tr>
<tr>
<td>217</td>
<td>PDF solution of nonlinear stochastic oscillators excited by Poisson pulse with EPC method</td>
<td>Er G. K.*, Iu V. P., Zhu H. T., Kou K. P.</td>
</tr>
<tr>
<td>218</td>
<td>Numeric research of chaotic vibration for a hard stiffness nonlinear rod</td>
<td>Gao J. W.*, Cai Z. M.</td>
</tr>
</tbody>
</table>

Structural Optimization

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>Study on sensitivity analysis and shape optimization of FE-EFG coupled method</td>
<td>Gong S. G.*, Xie G. L., Zhang J. P., Nie S. H., Li Y. M.</td>
</tr>
<tr>
<td>221</td>
<td>From truss-like continua to topology optimum trusses</td>
<td>Zhou K. M.*</td>
</tr>
<tr>
<td>222</td>
<td>Research on confirmation of tension leveller basic technological parameters based on neural network and genetic algorithm</td>
<td>Liu K.*, Xu H. Z., Gao H., Peng X. H., Yao L.</td>
</tr>
<tr>
<td>223</td>
<td>Dynamic optimization of gyroscope rubber vibration absorber based on genetic algorithm</td>
<td>Wei Y. T.*, Sheng Y., Zeng X. G.</td>
</tr>
<tr>
<td>224</td>
<td>A variational procedure for optimal design</td>
<td>Yu C.*, Pedregal P.</td>
</tr>
<tr>
<td>225</td>
<td>Aerodynamic optimization of the arc-wing missile</td>
<td>Cui K.*, Yang G. W.</td>
</tr>
<tr>
<td>226</td>
<td>Optimization of dynamic characteristic of airbag landing impact attenuation</td>
<td>Liu X.*, Han X., Wen G. L.</td>
</tr>
</tbody>
</table>

Author Index