Evolutionary Computation in Practice

With 133 Figures and 29 Tables

Springer
Contents

Contributing Authors vii
Preface xi
Foreword xiii

1
An Introduction to Evolutionary Computation in Practice
Tina Yu and Lawrence Davis 1

2
Design for Product Embedded Disassembly
Shingo Takeuchi and Kazuhiro Saitou 9

3
Multi-Level Decomposition for Tractability in Structural Design Optimization
Erik D. Goodman, Ronald C. Averill and Ranny Sidhu 41

4
Representing the Change - Free Form Deformation for Evolutionary Design Optimization
Stefan Menzel and Bernhard Sendhoff 63

5
Evolving Microstructured Optical Fibres
Steven Manos and Peter J. Bentley 87

6
Making Interactive Evolutionary Graphic Design Practical
Carl Anderson, Daphna Buchsbaum, Jeff Potter, and Eric Bonabeau 125

7
Optimization of Store Performance Using Personalized Pricing
Cem Baydar 143

8
A Computational Intelligence Approach to Railway Track Intervention Planning
Derek Bartram, Michael Burrow and Xin Yao 163
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>A Co-Evolutionary Fuzzy System for Reservoir Well Logs Interpretation</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Tina Yu and Dave Wilkinson</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Resource Scheduling with Permutation Based Representations</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Darrell Whitley, Andrew Sutton, Adele Howe and Laura Barbulescu</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Evolutionary Computation in the Chemical Industry</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Arthur Kordon</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Technology Transfer: Academia to Industry</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Rajkumar Roy and Jorn Mehnen</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>A Survey of Practitioners of Evolutionary Computation</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Gregory S. Hornby and Tina Yu</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Evolutionary Computation Applications: Twelve Lessons Learned</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Lawrence Davis</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Evolutionary Computation at American Air Liquide</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Charles Neely Harper and Lawrence Davis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>319</td>
</tr>
</tbody>
</table>
 Contributing Authors

Carl Anderson is currently working with Archimedes, Inc. In 1998, he was awarded the Philip Steinmetz Fellowship at the Santa Fe Institute and in 2002–2003 was the Anderson/Interface Visiting Assistant Professor in Natural Systems at the School of Industrial and Systems Engineering at Georgia Institute of Technology, Atlanta (eggandchips@gmail.com).

Ronald C. Averill is President and CEO of Red Cedar Technology, Inc., and Associate Professor of Mechanical Engineering at Michigan State University (r.averill@redcedartech.com).

Laura Barbulescu is a Project Scientist in the Robotics Institute at Carnegie Mellon University (laurabar@andrew.cmu.edu).

Derek Bartram is currently working towards a Ph.D. from Rail Research UK at the University of Birmingham for his project entitled A Computational Intelligence Approach to Railway Track Intervention Planning.

Cem Baydar is Director at Peppers & Rogers Group. Prior to Peppers & Rogers Group, he was the Director of Analytical Solutions at comScore Inc., USA. Prior to comScore, he worked for Accenture as a manager for 5 years (cem.baydar@gmail.com).

Peter Bentley is a Senior Research Fellow at the Department of Computer Science, University College, London (p.bentley@cs.ucl.ac.uk).

Daphna Buchsbaum is an artificial intelligence researcher and developer at Icosystem Corporation in Cambridge MA. In Fall 2007 she will begin an interdisciplinary PhD program in computational psychology at the University of California, Berkeley.

Eric Bonabeau is Chief Scientist of Boston-based Icosystem Corporation. He sits on the advisory board of a number of Fortune 500 corporations. Prior to his
current position, Eric was the CEO of Eurobios. He has been a research director with France Telecom R&D and the Interval Research Fellow at the Santa Fe Institute (eric@icosystem.com).

Michael Burrow is a senior research fellow at the University of Birmingham Railway Group where he is working on several highway and railway related projects.

Lawrence Davis is President of VGO Associates and Vice President of VGO Oil and Gas (ddavis@vgoassociates.com).

Erik D. Goodman is Vice President of Technology at Red Cedar Technology, Inc. and Professor of Electrical & Computer Engineering and Mechanical Engineering at Michigan State University (goodman@egr.msu.edu).

Charles Neely Harper is Director of National Supply and Pipeline Operations at Air Liquide Large Industries U.S. LP. (Charles.Harper@Airliquide.com).

Gregory Hornby is a Project Scientist with U.C. Santa Cruz at NASA Ames Research Center. He received his Ph.D. in Computer Science from Brandeis University in 2002. He was a visiting researcher at Sony’s Digital Creatures Laboratory in 1998 (hornby@email.arc.nasa.gov).

Adele Howe is Professor of Computer Science at Colorado State University (howe@cs.colostate.edu).

Arthur K Kordon is a Research and Development Leader in the Modeling Group within the Engineering and Process Sciences Corporate R&D Organization of the Dow Chemical Company (akkordon@dow.com).

Steven Manos is with Optical Fibre Technology Centre, University of Sydney, Australia and the Centre for Computational Science, University College London (s.manos@ucl.ac.uk).

Stefan Menzel is Senior Scientist at the Honda Research Institute Europe GmbH, Germany (stefan.menzel@honda-ri.de).

Jeff Potter is with Icosystem Corporation in Cambridge MA. He has collaborated with research teams at the MIT Media Lab, UC Berkeley, UT Austin, and UVC.

Kazuhiro Saitou is Associate Professor of Mechanical Engineering at University of Michigan, Ann Arbor, MI, USA (kazu@umich.edu).
Contributing Authors

Bernhard Sendhoff is Chief Technology Officer at the Honda Research Europe GmbH, Germany (bs@honda-ri.de).

Ranny Sidhu is a Lead Engineer at Red Cedar Technology, Inc. (r.sidhu@redcedartech.com).

Andrew Sutton is a Ph.D. student at Colorado State University.

Shingo Takeuchi is a graduate student at the Department of Mechanical Engineering at University of Michigan (stakeuch@umich.edu).

Darrell Whitley is Professor and Chair of Computer Science at Colorado State University (whitley@cs.colostate.edu).

Dave Wilkinson is a geophysicist in the Seismic Analysis and Reservoir Property Estimation Team at Chevron Energy Technology Company.

Xin Yao is a Professor of Computer Science at the University of Birmingham, Birmingham, U.K. He is also the Director of the Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA), a Distinguished Visiting Professor of the University of Science and Technology of China, Hefei, and a visiting professor of three other universities (X.Yao@cs.bham.ac.uk).

Tina Yu is Associate Professor of Computer Science at Memorial University of Newfoundland, Canada. Prior to her current position, she worked at Chevron Technology Company for 6 years and Bell Atlantic (NYNEX) Science and Technology for 6 years (tinayu@cs.mun.ca).
Preface

Evolutionary Computation in Practice (ECP) has been a special track at the Genetic and Evolutionary Computation Conference (GECCO) since 2003. This track is dedicated to the discussion of issues related to the practical application of EC-related technologies. During the past four years, members from industry, governmental agencies and other public sectors have participated in presentations and discussions describing how evolution-related technologies are being used to solve real-world problems. They have also engaged in intense dialogue on bridging academic training and real-world usage of EC together.

This book compiles papers from practitioners who have presented their work at ECP. These contributing chapters discuss various aspects of EC projects, including:

- Real-world application success stories;
- Real-world application lessons learned;
- Academic case studies of real-world applications;
- Technology transfer to solve real-world problems.

We would like to thank Janusz Kacprzyk for inviting us to edit this book for Springer’s Studies in Computational Intelligence Series. During the one-year period of book preparation, Thomas Ditzinger and Heather King at Springer have been very supportive to our needs. Dino Oliva has proofread many chapters of the book, which helped relieve some of the stress. We also thank the distinguished individuals who wrote foreword and back quotes for the book. Finally, the support of SIGEVO to this book project is greatly appreciated.

Tina Yu, Lawrence Davis, Cem Baydar, Rajkumar Roy
Foreword

Give Evolutionary Algorithms a chance! Put them to work! But do it smart.

This book demonstrates not only that Evolutionary Algorithms (EAs) are now a mature technology that can (and should) be applied to solve large complex real-world optimization problems, but also that the diffusion between cutting edge research and outstandingly efficient (i.e. billion-dollars-saving) applications can be very fast indeed: the most recent algorithmic advances can be quickly put to work in domains that a priori seemed rather far from any Computer Lab.

The main characteristic of EAs that makes this possible – and clearly appears in all the chapters of this book – is their flexibility. Flexibility to explore non-standard search spaces: many representations used in the works described here involved both discrete and continuous variables, many are variable-length representations, and twisting the problem so that the use of more classical optimization algorithms would dramatically reduce the space of possible solutions. Along the same line, approaches pertaining to recently proposed embryogenic representations can be found here, together with revisited older ideas of indirect representations that had been used in scheduling for 20 years. Flexibility to optimize highly irregular and/or very expensive fitness functions, using specifically tailored flavors of EAs: hierarchical algorithms, surrogate models. Flexibility to efficiently handle very different types of constraints, in the representation itself, as well as in the morphogenetic process – the possibly complex mapping between genotypes and phenotypes – or in the fitness itself.

Of course, this flexibility has a cost: because EAs offer so many possible ways to achieve the same goal, there are many choices to make, ranging from their setup to the choice of representation and variation operators (crossover, mutation, and the like) and the tedious task of parameter tuning (as no general method yet exists to fully automatize this process). This leads to a situation that can be described in a way that is familiar to EA practitioners: when applying EA to real-world problems, too, there are no free lunches! Success stories such
as those described in this book can only be obtained thanks to the close cooperation of open-minded experts in the application domain and smart evolutionary algorithmicists.

But in the end, such collaboration will pay off, by allowing what seems more and more necessary today when it comes to automatize repetitive complex tasks, and eventually try to improve on human operators: the re-introduction of the human factor. This goes from choosing representations that leave room for creativity (as there is nothing called artificial creativity, there are only creative programmers!), to letting human selection replace “natural” selection, what is done in the interactive evolution framework, and to designing optimized procedures that will be adapted to the user/customer (e.g. taking into account, when optimizing a delivery system, that Joe and Louis like to have lunch at Martin’s Place . . .).

So, even if we will not unveil here the address of Martin’s Place, you must read this book, whether you are an EA practitioner wishing to start working on challenging problems that you will not find described in any textbook (and eventually willing to earn a few dollars at the same time), or an engineer willing to hear true success stories involving colleagues (or competitors!).

Marc Schoenauer, Ph.D.
Editor in Chief
Evolutionary Computation Journal
August, 2007