The advancements of computational and informational techniques have enabled in silico testing of many lab-based experiments in life sciences before performing them in vitro or in vivo. Though computational techniques are not capable of mimicking all wet-lab experiments, bioinformatics will inevitably play a major role in future medical practice. For example, in the pursuit of new drugs it can reduce the costs and complexity involved in expensive wet-lab experiments. It is expected that by 2010, sequencing of individual genomes will be affordable generating an unprecedented increase of life sciences data, in the form of sequences, expressions, networks, images, literature. Pattern recognition techniques lie at the heart of discovery of new insights into biological knowledge, as the presence of particular patterns or structure is often an indication of its function.

The aim of the workshop series Pattern Recognition in Bioinformatics (PRIB) is to bring pattern recognition scientists and life scientists together to promote pattern recognition applications to solve life sciences problems. This volume presents the proceedings of the 2nd IAPR Workshop PRIB 2007 held in Singapore, October 1–2, 2007. It includes 38 technical contributions that were selected by the International Program Committee from 125 submissions. Each of these rigorously reviewed papers was presented orally at the workshop. The proceedings consists of six parts. Part 1: Sequence Analysis; Part 2: Prediction of Protein Structure, Interaction, and Localization; Part 3: Gene Expression Analysis; Part 4: Pathway Analysis; Part 5: Medical Informatics; and Part 6: Bioimaging.

Part 1 of the proceedings contains seven chapters on sequence analysis. Tang et al. propose a new design of BLAST-based gene ontology (GO) term annotator which incorporates data mining techniques and rough sets to deduce biological functions from DNA sequences. A design of ClustalW, using field programmable gate arrays (FPGA) is developed by Aung et al. to perform sequence alignment in real-time applications. Stepanova, Lin, and Lin develop a two-phase artificial neural network, and present its FPGA implementation, for genome-wide detection of response elements in steroid hormone receptors. Greene, Bill, and Moore propose an expert knowledge-guided mutation operator for the detection of genome-wide variations of DNA, using genetic programming. Luthra et al. find a conserved motif PMNYM of the transmembrane TM5 domain involved in dimerization of the A2a receptor, with a PROSITE search. Deng, Deng, and Havukkala find a strong GC and AT skew correlation in the chicken genome, using a novel visualization technique. Pearson et al. compare interval mapping to a hierarchical Bayesian method for quantitative trait loci analysis on Arabidopsis thaliana.

Part 2 of the proceedings contains nine chapters on the prediction of protein structure, interaction, and localization. Shi et al. propose multiple support vector machines (SVM) to handle different features and then decision templates to combine predictions so as to detect protein subcellular localization. Hoque, Chetty, and Dooley
propose a generalized schemata theorem incorporating twin removal for genetic algorithms (GA) to predict protein structure. Zhang, Wei, and Ding use a fuzzy SVM to improve the prediction of structural classes of low-homology proteins. Singh and Ramani demonstrate a method to predict right-handed β-helix fold from protein sequences using SVM and report improved performance measures.

Taguchi and Gromiha investigate several amino acid features and find amino acid occurrences improve the recognition of protein fold recognition significantly over the other features. Ou, Shao, and Chen propose an efficient RBF network to identify interface residues of interacting proteins, based on PSSM profiles and biochemical properties. Ahmad presents dynamic outlier exclusion training algorithm for neural networks to enhance sequence-based predictions in residue level protein properties. Gromiha analyzes amino acid sequences of transmembrane β-barrel proteins (TMBs) and finds a significantly higher occurrence of Ser, Asn and Gln in TMBs than in globular proteins. Ahmed estimates the evolutionary average hydrophobicity profile from a family of protein sequences.

Part 3 of the proceedings contains nine chapters on gene expression analysis. Yuriy et al. develop an online database for Affymetrix probe mapping and annotation (APMA) for interactive access, search, and visualization of target sequences mapping and annotation. Blanco, Martin-Merino, and Rivas combine different kinds of dissimilarity-based classifiers for the identification of cancerous samples from microarray data and illustrate its efficacy over existing classifiers. Stiglic, Khan, and Kokol propose small ensemble classifiers to visually interpret microarray data for easy comprehension of their functionality. The method is illustrated in a case-study of leukemia samples. Zhou et al. propose ant-MST, an ant-based minimum spanning tree for gene expression data clustering. McGarry, Sarfraz, and McIntyre integrate GO measures to SOM classification of gene expression data to obtain biologically meaningful clusters of genes.

Teng and Chan find order preserving clusters in gene expression data by converting each gene vector into an ordered label sequence. A method is then proposed by finding the frequent orders by iteratively combining the most frequent prefixes and suffixes in a statistical way. Mao and Tang propose correlation-based relevancy and redundancy measures for efficient gene selection and show promising results in six gene expression problems. Mundra and Rajapakse present relevancy and redundancy criteria for gene selection with an SVM-recursive feature elimination (RFE) method which selects gene subsets with better classification accuracy and generalization capability compared to the SVM-RFE method. Oja obtains digital expression profiles of human endogenous retroviruses.

Part 4 of the proceedings contains four chapters on pathway analysis. Ram and Chetty propose a framework for path analysis in gene regulatory networks by first finding the network structure by causal modeling and then enhancing the network by post-processing. Sehgal et al. reconstruct transcriptional gene regulatory network reconstruction through cross-platform fusion of gene networks. Ling et al. reconstruct protein–protein interaction pathways by mining subject-verb-objects intermediates in biological texts. Chaturvedi, Sakharkar, and Rajapakse propose a validation technique for gene regulatory networks with protein–protein interaction data by using a GA.
They demonstrate the potential of the method in an application to cell-cycle regulation.

Part 5 of the proceedings contains four chapters in medical informatics. Kurzynski and Zolnierzek introduce and compare rough set- and fuzzy set-based methods for sequential medical diagnostic problems. Perumal, Lim and Sakharkar propose a comparative genomic approach for metabolic pathway analysis for in silico identification of putative drug targets in *Pseudomonas aeruginosa*. You et al. compare four methods of affinity prediction models for HLA-binding peptides and T-cell epitope identification, and find that non-liner models perform better than linear predictors. Rajapakse and Feng propose a method to identify peptides binding to MHC molecules by simultaneously optimizing entropy and evolutionary distance. Further, the binding motifs are determined by the optimal alignment of binding sites.

Part 6 of the proceedings contains five chapters on bioimaging. Dufour et al. develop an automated nuclear morphometric analysis of 3D fluorescence microscopy images by using active meshes. They also propose shape descriptors and evaluate their robustness and independence on fluorescent beads and on two cell lines. Kumar and Rajapakse propose a time-frequency-based method for detection of activation in functional MRI time-series and discuss the advantages over earlier methods. Dehzangi, Zolghadri, and Boostani develop a weighted distance neural network for high-performance classification of two imagery tasks in the cue-based brain computer interface. Zheng and Rajapakse tract the anatomical connectivity of the brain, using sequential sampling and resampling of diffusion tensor MR images. The method does not adopt fractional anisotropy as the stopping criteria and regularizes the fiber-tracking process by assigning high confidence values at low curvature points. Gong et al. develop an automated pipeline for classification of CT brain images of different head trauma, which is useful for building a content-based medical image retrieval system.

We would like to sincerely thank all authors who spent their time and effort to make important contributions to this book. Many thanks go to the reviewers whose comments have enhanced the quality of the chapters. Our gratitude also goes to the LNBI editors and the managing editor for their most kind support and help in editing this book.

We would also like to thank all individuals and institutions that contributed to the success of PRIB 2007, especially the authors for submitting the papers and all the sponsors for generously providing financial support for the workshop. We are very grateful to IAPR for the sponsorship and the IAPR Technical Committee (TC-20) on Pattern Recognition for Bioinformatics for their support and advice. Our gratitude goes to the School of Computer Engineering, Nanyang Technological University, Singapore, for supporting the workshop in many ways.

We would like to express our gratitude to all PRIB 2007 International Program Committee members and other invited reviewers for their objective and thorough reviews of the submitted papers. We fully appreciate the PRIB 2007 Organizing Committee for their time and excellent work. We thank Publicity Co-chairs, Feng Lin and Sy Loi Ho, for their hard work in getting the proceedings ready on time. We are grateful to Norhana Ahmad, PRIB 2007 secretary, for coordinating all the logistics of the workshop. Our thanks also go to Ang Linda for maintaining the workshop Web
site, Tan Sing Yau for the technical support, and Jean Tan for his help in graphics design.

Last but not least, we wish to convey our sincere thanks to Springer for providing excellent professional support in preparing this volume.

October 2007

Jagath C. Rajapakse
Raj Acharya
Bertil Schmidt
Gwenn Volkert
Organization

IAPR Technical Committee (TC-20) on Pattern Recognition for Bioinformatics

Raj Acharya (Vice-chair) Pennsylvania State University, USA
Fransisco Azuaje University of Ulster, UK
Vladimir Brusic University of Queensland, Australia
Phoebe Chen Deakin University, Australia
David Corne Heriot-Watt University, UK
Elena Marchiori Vrije University of Amsterdam, The Netherlands
Mariofanna Milanova University of Arkansas at Little Rock, USA
Gary B. Fogel Natural Selection, Inc., USA
Saman K. Halgamuge University of Melbourne, Australia
Visakan Kadirkamanathan University of Sheffield, UK
Nik Kasabov Auckland University of Technology, New Zealand
Irwin King Chinese University of Hong Kong, Hong Kong
Alex V. Kochetov Russian Academy of Sciences, Russia
Graham Leedham Nanyang Tech. University, Singapore
Ajit Narayanan University of Exeter, UK
Marimuthu Palaniswami University of Melbourne, Australia
Jagath C. Rajapakse (Chair) Nanyang Tech. University, Singapore
Gwenn Volkert Kent State University, USA
Roy E. Welsch Massachusetts Inst. of Technology, USA
Kay C. Wiese Simon Fraser University, Canada
Limsoon Wong National University of Singapore, Singapore
Jiahua (Jerry) Wu Wellcome Trust Sanger Inst., UK
Yanqing Zhang Georgia State University, USA
Qiang Yang Hong Kong University of Science and Technology, Hong Kong
PRIB 2007 Organization

General Chair
Jagath C. Rajapakse (Co-chair) Nanyang Technological University, Singapore

General Co-chair
Raj Acharya Pennsylvania State University, USA

Program Chairs
Bertil Schmidt University of New South Wales Asia, Singapore
Gwenn Volkert Kent State University, USA

Special Session Chairs
Shandar Ahmad National Institute of Biomedical Innovation, Japan
Madhu Chetty Monash University, Australia
Elena Marchiori Vrije University of Amsterdam, The Netherlands

Publicity Chairs
Saman K. Halgamuge University of Melbourne, Australia
Roberto Tagliaferri Università Di Salerno, Italy
Wei Wang Fudan University, China
Yanqing Zhang Georgia State University, USA

Publication Chairs
Sy-Loi Ho Nanyang Technological University, Singapore
Feng Lin Nanyang Technological University, Singapore

Local Chair
Graham Leedham University of New South Wales Asia, Singapore
Local Organization Committee

Byron Koon Kau Choi Nanyang Technological University, Singapore
Yulan He Nanyang Technological University, Singapore
Hwee Kuan Lee Bioinformatics Institute, Singapore
Jinming Li Nanyang Technological University, Singapore

Secretariat

Norhana Binte Ahmad Nanyang Technological University, Singapore

System Administration

Linda Ang Ah Giat Nanyang Technological University, Singapore

Program Committee

Tatsuya Akutsu Kyoto University, Japan
Guillaume Bourque Genome Institute of Singapore, Singapore
Timo Rolf Bretschneider Nanyang Technological University, Singapore
Zehra Cataltepe Istanbul Technical University, Turkey
Phoebe Chen Deakin University, Australia
Francis Y.L. Chin University of Hong Kong, Hong Kong
Peter Clote Boston College, USA
David Corne Heriot-Watt University, UK
Carlos Cotta University of Malaga, Spain
Antoine Danchin Institut Pasteur, France
Joaquín Dopazo Centro de Investigación Príncipe Felipe, Spain
James G. Evans Massachusetts Institute of Technology, USA
Alexandru Floares Oncological Institute Cluj-Napoca, Romania
Mikhail S. Gelfand Institute for Information Transmission Problems, Russia
Ilkka Havukkala Auckland University of Technology, New Zealand
Jaap Heringa Vrije Universiteit, The Netherlands
Lisa Holm University of Helsinki, Finland
Ming-Jing Hwang Academia Sinica, Taiwan
Visakan Kadirkamanathan University of Sheffield, UK
Nikola Kasabov Auckland University of Technology, New Zealand
Irwin King The Chinese University of Hong Kong, Hong Kong
Alex V. Kochetov
Vladimir A. Kuznetsov
Chee Keong Kwoh
Wing-Ning Li
Alan Wee-Chung Liew
Frederique Lisacek
Hiroshi Matsuno
Martin Middendorf
Mariofanna Milanova
Aleksandar Milosavljevi
Satoru Miyano
Jason H. Moore
Parvin Mousavi
See-Kiong Ng
Yanay Ofran
Christos Ouzounis
Zoran Obradovic
Nikhil R. Pal
Laxmi Parida
Mihail Popescu
Predrag Radivojac
Nikolaus Rajewsky
Jem Rowland
Meena Kishore Sakharkar
Akinori Sarai
Alexander Schliep
Christian Schoenbach
N. Srinivasan
P. N. Suganthan
Wing Kin Sung
Anna Tramontano
Michael Wagner
Haiying Wang
Lusheng Wang
Michael Q. Zhang

Russian Academy of Sciences, Russia
Genome Institute of Singapore, Singapore
Nanyang Technological University, Singapore
University of Arkansas, USA
Chinese University of Hong Kong, Hong Kong
Swiss Institute of Bioinformatics, Switzerland
Yamaguchi University, Japan
Universität Leipzig, Germany
University of Arkansas at Little Rock, USA
Baylor College of Medicine, USA
University of Tokyo, Japan
Dartmouth Medical School, USA
Queen's University, Canada
Institute for Infocomm Research, Singapore
Columbia University, USA
European Bioinformatics Institute, UK
Temple University, USA
Indian Statistical Institute, India
IBM T.J. Watson Research Center, USA
University of Missouri, USA
Indiana University, USA
Max Delbruck Center for Molecular Medicine, Germany
University of Wales Aberystwyth, UK
Nanyang Technological University, Singapore
Kyushu Institute of Technology, Japan
Max Planck Institute for Molecular Genetics, Germany
Nanyang Technological University, Singapore
Indian Institute of Science, India
Nanyang Technological University, Singapore
National University of Singapore, Singapore
University of Rome "La Sapienza", Italy
Cincinnati Children's Hospital Research Foundation, USA
University of Ulster at Jordanstown, UK
City University of Hong Kong, Hong Kong
Cold Spring Harbor Laboratory, USA
Reviewers

Konagaya Akihiko RIKEN, Genomic Sciences Centre, Japan
Mundra Piyushkumar Arjunlal Nanyang Technological University, Singapore

Wendy Ashlock University of Guelph, Canada
Sansanee Auephanwiriyakul Chiangmai University, Thailand
Jung-Hsien Chiang National Cheng Kung University, Taiwan
Kai-Bo Duan Center for Drug Discovery, Singapore
Julien Epps University of New South Wales Asia, Singapore

Margaret J. Eppstein University of Vermont, Canada
Bruno Gaeta University of New South Wales, Australia
Shinn-Ying Ho National Chiao Tung University, Taiwan
Masoud Jamei Simcyp Limited, UK
Vert Jean-Philippe Ecole des Mines de Paris, France
Vinny Just Ohio University, USA
Marta Kasprzak Poznan University of Technology, Poland
Kyung Joong Kim Yonsei University, Korea
Prasanna Ratnakar Kolatkar Genomic Institute of Singapore, Singapore
Lukasz Kurgan University of Alberta, Canada
Weiguo Liu Nanyang Technological University, Singapore
Pasi Luukka Lappeenranta University of Technology, Finland

Jianmin Ma Nanyang Technological University, Singapore
Nawar Malhis University of British Columbia, Canada
Bernard Moret Ecole Polytechnique Federale de Lausanne, France

Ngoc Minh Nguyen Nanyang Technological University, Singapore
Merja Oja University of Helsinki, Finland
Menaka Rajapakse Institute of Infocomm Research, Singapore
Carmelina Ruggiero University of Genoa, Italy
Muhammad Shoaib B. Sehgal Monash University, Australia
Scott Smith Boise State University, USA
Yuchun Tang Georgia State University, USA
Thanos Vasilakos University of Western Macedonia, Greece
Chandra Verma Bioinformatics Institute, Singapore
Tiffani Williams Texas A&M Engineering, USA
Gwan-Su Yi Information and Communications University, Korea

Rui Xu University of Missouri-Rolla, USA
Runxuan Zhang Institut Pasteur, France
Shuigeng Zhou Fudan University, China
Table of Contents

Part I: Sequence Analysis
Automated Methods of Predicting the Function of Biological Sequences Using GO and Rough Set .. 1
Xu-Ning Tang, Zhi-Chao Lian, Zhi-Li Pei, and Yan-Chun Liang

C-Based Design Methodology for FPGA Implementation of ClustalW MSA .. 11
Yan Lin Aung, Douglas L. Maskell, Timothy F. Oliver, Bertil Schmidt, and William Bong

A Two-Phase ANN Method for Genome-Wide Detection of Hormone Response Elements ... 19
Maria Stepanova, Feng Lin, and Valerie C.-L. Lin

An Expert Knowledge-Guided Mutation Operator for Genome-Wide Genetic Analysis Using Genetic Programming 30
Casey S. Greene, Bill C. White, and Jason H. Moore

cDNA-Derived Amino Acid Sequence from Rat Brain A2aR Possesses Conserved Motifs PMNYM of TM 5 Domain, Which May Be Involved in Dimerization of A2aR .. 41
Pratibha Mehta Luthra, Sandeep Kumar Barodia, Amresh Prakash, and Ramraghubir

Strong GC and AT Skew Correlation in Chicken Genome 51
Xuegong Deng, Xuemei Deng, and Ilkka Havukkala

Comparative Analysis of a Hierarchical Bayesian Method for Quantitative Trait Loci Analysis for the Arabidopsis Thaliana 60
Caroline Pearson, Susan J. Simmons, Karl Ricanek Jr., and Edward L. Boone

Part II: Prediction of Protein Structure, Interaction and Localization
Using Decision Templates to Predict Subcellular Localization of Protein ... 71
Jianyu Shi, Shaowu Zhang, Quan Pan, and Yanning Zhang

Generalized Schemata Theorem Incorporating Twin Removal for Protein Structure Prediction ... 84
Md Tamjidul Hoque, Madhu Chetty, and Laurence S. Dooley
Using Fuzzy Support Vector Machine Network to Predict Low Homology Protein Structural Classes 98
 Tongliang Zhang, Rong Wei, and Yongsheng Ding

SVM-BetaPred: Prediction of Right-Handed β-Helix Fold from Protein Sequence Using SVM ... 108
 Siddharth Singh, Krishnan Hajela, and Ashwini Kumar Ramani

Protein Fold Recognition Based Upon the Amino Acid Occurrence 120
 Y.-h. Taguchi and M. Michael Gromiha

Using Efficient RBF Network to Identify Interface Residues Based on PSSM Profiles and Biochemical Properties 132
 Yu-Yen Ou, Shu-An Chen, Chung-Lu Shao, and Hao-Geng Hung

Dynamic Outlier Exclusion Training Algorithm for Sequence Based Predictions in Proteins Using Neural Network 142
 Shandar Ahmad

Bioinformatics on β-Barrel Membrane Proteins: Sequence and Structural Analysis, Discrimination and Prediction 148
 M. Michael Gromiha

Estimation of Evolutionary Average Hydrophobicity Profile from a Family of Protein Sequences 158
 Said Hassan Ahmed and Tor Flå

Part III: Gene Expression Analysis

APMA Database for Affymetrix Target Sequences Mapping, Quality Assessment and Expression Data Mining 166
 Yuriy Orlov, Jiangtao Zhou, Joanne Chen, Atif Shahab, and Vladimir Kuznetsov

Ensemble of Dissimilarity Based Classifiers for Cancerous Samples Classification ... 178
 Ángela Blanco, Manuel Martín-Merino, and Javier de las Rivas

Gene Expression Analysis of Leukemia Samples Using Visual Interpretation of Small Ensembles: A Case Study 189
 Gregor Stiglic, Nawaz Khan, Mateja Verlic, and Peter Kokol

Ant-MST: An Ant-Based Minimum Spanning Tree for Gene Expression Data Clustering ... 198
 Deyu Zhou, Yulan He, Chee Keong Kwoh, and Hao Wang

Integrating Gene Expression Data from Microarrays Using the Self-Organising Map and the Gene Ontology 206
 Ken McGarry, Mohammad Sarfraz, and John MacIntyre
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Preserving Clustering by Finding Frequent Orders in Gene</td>
<td>218</td>
</tr>
<tr>
<td>Expression Data</td>
<td></td>
</tr>
<tr>
<td>Li Teng and Laiwan Chan</td>
<td></td>
</tr>
<tr>
<td>Correlation-Based Relevancy and Redundancy Measures for Efficient</td>
<td>230</td>
</tr>
<tr>
<td>Gene Selection</td>
<td></td>
</tr>
<tr>
<td>Kezhi Z. Mao and Wenyin Tang</td>
<td></td>
</tr>
<tr>
<td>SVM-RFE with Relevancy and Redundancy Criteria for Gene Selection</td>
<td>242</td>
</tr>
<tr>
<td>Piyushkumar A. Mundra and Jagath C. Rajapakse</td>
<td></td>
</tr>
<tr>
<td>In Silico Expression Profiles of Human Endogenous Retroviruses</td>
<td>253</td>
</tr>
<tr>
<td>Merja Oja</td>
<td></td>
</tr>
<tr>
<td>Part IV: Pathway Analysis</td>
<td>264</td>
</tr>
<tr>
<td>A Framework for Path Analysis in Gene Regulatory Networks</td>
<td></td>
</tr>
<tr>
<td>Ramesh Ram and Madhu Chetty</td>
<td></td>
</tr>
<tr>
<td>Transcriptional Gene Regulatory Network Reconstruction Through</td>
<td>274</td>
</tr>
<tr>
<td>Cross Platform Gene Network Fusion</td>
<td></td>
</tr>
<tr>
<td>*Muhammad Shoaib B. Sehgal, Iqbal Gondal, Laurence Dooley,</td>
<td></td>
</tr>
<tr>
<td>Ross Coppel, and Goh Kiah Mok</td>
<td></td>
</tr>
<tr>
<td>Reconstruction of Protein-Protein Interaction Pathways by Mining</td>
<td>286</td>
</tr>
<tr>
<td>Subject-Verb-Objects Intermediates</td>
<td></td>
</tr>
<tr>
<td>*Maurice HT Ling, Christophe Lefevre, Kevin R. Nicholas, and</td>
<td></td>
</tr>
<tr>
<td>Feng Lin</td>
<td></td>
</tr>
<tr>
<td>Validation of Gene Regulatory Networks from Protein-Protein</td>
<td>300</td>
</tr>
<tr>
<td>Interaction Data: Application to Cell-Cycle Regulation</td>
<td></td>
</tr>
<tr>
<td>Iti Chaturvedi, Meena Kishore Sakharkar, and Jagath C. Rajapakse</td>
<td></td>
</tr>
<tr>
<td>Part V: Medical Informatics</td>
<td>311</td>
</tr>
<tr>
<td>Rough Sets and Fuzzy Sets Theory Applied to the Sequential Medical</td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Andrzej Zolnierek and Marek Kurzynski</td>
<td></td>
</tr>
<tr>
<td>In silico Identification of Putative Drug Targets in Pseudomonas</td>
<td>323</td>
</tr>
<tr>
<td>aeruginosa Through Metabolic Pathway Analysis</td>
<td></td>
</tr>
<tr>
<td>Deepak Perumal, Chu Sing Lim, and Meena K. Sakharkar</td>
<td></td>
</tr>
<tr>
<td>Understanding Prediction Systems for HLA-Binding Peptides and</td>
<td>337</td>
</tr>
<tr>
<td>T-Cell Epitope Identification</td>
<td></td>
</tr>
<tr>
<td>Liwen You, Ping Zhang, Mikael Bodén, and Vladimir Brusic</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Predicting Binding Peptides with Simultaneous Optimization of Entropy and Evolutionary Distance ... 349
Menaka Rajapakse and Lin Feng

Part VI: Bioimaging

- **3D Automated Nuclear Morphometric Analysis Using Active Meshes** 356
 Alexandre Dufour, JooHyun Lee, Nicole Vincent, Regis Grialhe, and Auguste Genovesio

- **Time-Frequency Method Based Activation Detection in Functional MRI Time-Series** .. 368
 Arun Kumar and Jagath C. Rajapakse

- **High Performance Classification of Two Imagery Tasks in the Cue-Based Brain Computer Interface** 378
 Omid Dehzangi, Mansoor Zolghadri Jahromi, and Shahram Taferi

- **Human Brain Anatomical Connectivity Analysis Using Sequential Sampling and Resampling** 391
 Bo Zheng and Jagath C. Rajapakse

- **Classification of CT Brain Images of Head Trauma** 401
 Tianxia Gong, Ruizhe Liu, Chew Lim Tan, Neda Farzad, Cheng Kiang Lee, Boon Chuan Pang, Qi Tian, Suisheng Tang, and Zhuo Zhang

Author Index

.. 409