Fundamentals of Thermodynamics and Applications
Ingo Müller · Wolfgang H. Müller

Fundamentals of Thermodynamics and Applications

With Historical Annotations and Many Citations from Avogadro to Zermelo

Springer
Preface

Thermodynamics is the much abused slave of many masters • physicists who love the totally impractical Carnot process, • mechanical engineers who design power stations and refrigerators, • chemists who are successfully synthesizing ammonia and are puzzled by photosynthesis, • meteorologists who calculate cloud bases and predict fohn, boraccia and scirocco, • physico-chemists who vulcanize rubber and build fuel cells, • chemical engineers who rectify natural gas and distill fermented potato juice, • metallurgists who improve steels and harden surfaces, • nutrition counselors who recommend a proper intake of calories, • mechanics who adjust heat exchangers, • architects who construe – and often misconstrue – chimneys, • biologists who marvel at the height of trees, • air conditioning engineers who design saunas and the ventilation of air plane cabins, • rocket engineers who create supersonic flows, et cetera.

Not all of these professional groups need the full depth and breadth of thermodynamics. For some it is enough to consider a well-stirred tank, for others a stationary nozzle flow is essential, and yet others are well-served with the partial differential equation of heat conduction.

It is therefore natural that thermodynamics is prone to mutilation; different group-specific meta-thermodynamics’ have emerged which serve the interest of the groups under most circumstances and leave out aspects that are not often needed in their fields. To stay with the metaphor of the abused slave we might say that in some fields his legs and an arm are cut off, because only one arm is needed; in other circumstances the brain of the slave has atrophied, because only his arms and legs are needed. Students love this reduction, because it enables them to avoid “nonessential” aspects of thermodynamics. But the practice is dangerous; it may backfire when a brain is needed.

In this book we attempt to exhibit the complete fundament of classical thermodynamics which consists of the equations of balance of mass, momentum and energy, and of constitutive equations which characterize the behavior of material bodies, mostly gases, vapors and liquids because, indeed, classical thermodynamics is often negligent of solids, – and so are we, although not entirely.

Many applications are treated in the book by specializing the basic equations; a brief look at the table of contents bears witness to that feature.

Modern thermodynamics is a lively field of research at extremely low and extremely high temperatures and for strongly rarefied gases and in nano-tubes, or nano-layers, where quantum effects occur. But such subjects are not treated in this book. Indeed, there is nothing here which is not at least 70 years old. We claim, however, that our presentation is systematic and we believe that classical thermodynamics should be taught as we present it. If it were, thermodynamics might shed the nimbus of a difficult subject which surrounds it among students.

Even classical thermodynamics is such a wide field that it cannot be fully described in all its ramifications in a relatively short book like this one. We had to
resign ourselves to that fact. And we have decided to omit all discussion of • empirical state functions, • temperature dependent specific heats of liquids and ideal gases, and • irreversible secondary effects in engines. Such phenomena affect the neat analytical structure of thermodynamic problems, and we have excluded them, although we know full well that they are close to the hearts and minds of engineers who may even, in fact, consider incalculable irreversibilities of technical processes as the essence of thermodynamics. We do not share that opinion.

In the second half of the 19th century and early in the 20th century thermodynamics was at the forefront of physics, and eminent physicists and chemists like Planck, Einstein and Haber were steeped in thermodynamics; actually the formula $E = m c^2$, which identifies energy as it were, is basically a contribution to thermodynamics. We have made an attempt to enliven the text by a great many mini-biographies and historical annotations which are somewhat relevant to the development of thermodynamics or, in other cases, they illustrate early misconceptions which may serve to highlight the difficult emergence of the basic concepts of the field. A prologue has been placed in front of the main chapters in order to avoid going into subjects which are by now so commonplace that they are taught in high schools.

Colleagues, co-workers, and students have contributed to this work, some significantly, others little, but all of them something:

Mark Warmbrunn has drawn the cartoons. Rudolf Hentschel and Marlies Hentschel have helped with the figures and part of the text.

Several teaching assistants have edited the text and converted it into Springer style: Matti Blume, Anja Klinnert, Volker Marhold, Christoph Menzel, Felix J. Müller.

Guido Harneit has given support with the computer.

Everyone of them deserves our sincere gratitude.

Berlin, in the summer of 2008

Ingo Müller & Wolfgang H. Müller
Contents

P Prologue on ideal gases and incompressible fluids................................. 1
 P.1 Thermal and caloric equations of state... 1
 • Ideal gases .. 1
 • Incompressible fluid.. 1
 P.2 “mol”.. 2
 P.3 On the history of the equations of state... 3
 P.4 An elementary kinetic view of the equations of state for ideal gases;
 interpretation of pressure and absolute temperature..................... 4

I Objectives of thermodynamics and its equations of balance............ 7
 1.1 Fields of mechanics and thermodynamics..................................... 7
 1.1.1 Mass density, velocity, and temperature................................. 7
 1.1.2 History of temperature.. 7
 1.2 Equations of balance... 9
 1.2.1 Conservation laws of thermodynamics.................................... 9
 1.2.2 Generic equations of balance for closed and open systems...... 9
 1.2.3 Generic local equation of balance in regular points.............. 10
 1.3 Balance of mass.. 11
 1.3.1 Integral and local balance equations of mass.......................... 11
 1.3.2 Mass balance and nozzle flow.. 11
 1.4 Balance of momentum... 12
 1.4.1 Integral and local balance equations of momentum............... 12
 1.4.2 Pressure.. 14
 1.4.3 Pressure in an incompressible fluid at rest............................ 14
 1.4.4 History of pressure and pressure units................................ 15
 1.4.5 Applications of the momentum balance................................. 16
 • Buoyancy law of ARCHIMEDES .. 16
 • Barometric steps in the atmosphere....................................... 17
 • Thrust of a rocket ... 18
 • Thrust of a jet engine... 19
 • Convective momentum flux .. 20
 • Momentum balance and nozzle flow.................................... 21
 • Bernoulli equation.. 23
 • Kutta-Joukowski formula for the lift of an airfoil................ 24
 1.5 Balance of energy.. 26
 1.5.1 Kinetic energy, potential energy, and four types
 of internal energy.. 26
 • Kinetic energy of thermal atomic motion. “Heat energy”...... 26
 • Potential energy of molecular interaction. “Van der Waals
 energy” or “elastic energy”.. 27
• Chemical energy between molecules. “Heat of reaction” 27
• Nuclear energy .. 29
• Heat into work... 29

1.5.2 Integral and local equations of balance of energy 29
1.5.3 Potential energy .. 31
1.5.4 Balance of internal energy .. 32
1.5.5 Short form of energy balance for closed systems 33
1.5.6 First Law for reversible processes. The basis of “pdV -
thermodynamics” .. 34
1.5.7 Enthalpy and First Law for stationary flow processes.............. 34
1.5.8 “Adiabatic equation of state” for an ideal gas – an integral of the
energy balance .. 36
1.5.9 Applications of the energy balance... 37
• Experiment of GAY-LUSSAC ... 37
• Piston drops into cylinder.. 38
• Throttling .. 40
• Heating of a room... 40
• Nozzle flow ... 42
• Fan... 46
• Turbine... 47
• Chimney ... 48
• Thermal power station... 50

1.6 History of the First Law ... 53
1.7 Summary of equations of balance ... 55

2. Constitutive equations ... 57
2.1 On measuring constitutive functions ... 57
2.1.1 The need for constitutive equations .. 57
2.1.2 Constitutive equations for viscous, heat-conducting fluids,
vapors, and gas ... 57
2.2 Determination of viscosity and thermal conductivity 59
2.2.1 Shear flow between parallel plates. NEWTON’s law of friction 59
2.2.2 Heat conduction through a window-pane 61
2.3 Measuring the state functions $p(υ,T)$ and $υ(υ,T)$ 63
2.3.1 The need for measurements ... 63
2.3.2 Thermal equations of state ... 63
2.3.3 Caloric equation of state ... 64
2.3.4 Equations of state for air and superheated steam 66
2.3.5 Equations of state for liquid water 67
2.4 State diagrams for fluids and vapors with a phase transition 68
2.4.1 The phenomenon of a liquid-vapor phase transition 68
2.4.2 Melting and sublimation .. 70
2.4.3 Saturated vapor curve of water .. 70
2.4.4 On the anomaly of water ... 73
2.4.5 Wet region and \((p,v)\)-diagram of water.............................. 75
2.4.6 3D phase diagram .. 75
2.4.7 Heat of evaporation and \((h,T)\)-diagram of water................... 76
2.4.8 Applications of saturated steam ... 77
 • The preservation jar.. 77
 • Pressure cooker .. 78
2.4.9 Van der Waals equation .. 79
2.4.10 On the history of liquefying gases and solidifying liquids 81

3 Reversible processes and cycles “\(p\,dV\) thermodynamics” for the
calculation of thermodynamic engines .. 83
3.1 Work and heat for reversible processes 83
3.2 Compressor and pneumatic machine. The hot air engine 84
 3.2.1 Work needed for the operation of a compressor 84
 3.2.2 Two-stage compressor ... 86
 3.2.3 Pneumatic machine .. 86
 3.2.4 Hot air engine ... 87
3.3 Work and heat for reversible processes in ideal gases.
 “Iso-processes” and adiabatic processes .. 88
3.4 Cycles .. 89
 3.4.1 Efficiency in the conversion of heat to work 89
 3.4.2 Efficiencies of special cycles .. 90
 • Joule process .. 90
 • Carnot cycle .. 91
 • Modified Carnot cycle ... 92
 • Ericson cycle ... 94
 • Stirling cycle ... 96
3.5 Internal combustion cycles ... 96
 3.5.1 Otto cycle .. 96
 3.5.2 Diesel cycle ... 99
 3.5.3 On the history of the internal combustion engine 101
3.6 Gas turbine ... 102
 3.6.1 Brayton process ... 102
 3.6.2 Jet propulsion process ... 103
 3.6.3 Turbofan engine ... 104

4. Entropy .. 105
4.1 The Second Law of thermodynamics 105
 4.1.1 Formulation and exploitation ... 105
 • Formulation .. 105
 • Universal efficiency of the Carnot process 105
 • Absolute temperature as an integrating factor 107
Contents

- Growth of entropy ... 108
- \((T, S)\)-diagram and maximal efficiency of the Carnot process ... 110

4.1.2 Summary ... 111

4.2 Exploitation of the Second Law ... 113

4.2.1 Integrability condition ... 113

4.2.2 Internal energy and entropy of a van der Waals gas and of an ideal gas ... 114

4.2.3 Alternatives of the Gibbs equation and its integrability conditions ... 115

4.2.4 Phase equilibrium. Clausius-Clapeyron equation 117

4.2.5 Phase equilibrium in a van der Waals gas 119

4.2.6 Temperature change during adiabatic throttling. Example: Van der Waals gas ... 120

4.2.7 Available free energies .. 123

4.2.8 Stability conditions ... 125

4.2.9 Specific heat \(c_p\) is singular at the critical point 126

4.3 A layer of liquid heated from below – onset of convection 127

4.4 On the history of the Second Law .. 131

5. Entropy as \(S=k \ln W\) ... 135

5.1 Molecular interpretation of entropy .. 135

5.2 Entropy of a gas and of a polymer molecule 135

5.3 Entropy as a measure of disorder .. 139

5.4 Maxwell distribution .. 140

5.5 Entropy of a rubber rod ... 141

5.6 Examples for entropy and Second Law. Gas and rubber 143

5.6.1 Gibbs equation and integrability condition for liquids and solids ... 143

5.6.2 Examples for entropic elasticity .. 145

5.6.3 Real gases and crystallizing rubber 146

5.6.4 Free energy of gases and rubber. \((p,V)\)- and \((P,L)\)-curves. 148

5.6.5 Reversible and hysteretic phase transitions 150

5.7 History of the molecular interpretation of entropy 151

6. Steam engines and refrigerators .. 153

6.1 The history of the steam engine ... 153

6.2 Steam engines ... 155

6.2.1 The \((T,S)\)-diagram ... 155

6.2.2 Clausius-Rankine process. The essential role of enthalpy 155

6.2.3 Clausius-Rankine process in a \((T,S)\)-diagram 157

6.2.4 The \((h,s)\)-diagram ... 159

6.2.5 Steam flow rate and efficiency of a power station 161

6.2.6 Carnotization ... 162
6.2.7 Mercury-water binary vapor cycle .. 163
6.2.8 Combined gas-vapor cycle .. 164
6.3 Refrigerator and heat pump ... 164
 6.3.1 Compression refrigerator .. 164
 6.3.2 Calculation for a cold storage room ... 165
 6.3.3 Absorption refrigerator ... 166
 6.3.4 Refrigerants .. 167
 6.3.5 Heat pump .. 168
7. Heat Transfer .. 171
 7.1 Non-Stationary Heat Conduction .. 171
 7.1.1 The heat conduction equation .. 171
 7.1.2 Separation of variables ... 171
 7.1.3 Examples of heat conduction ... 172
 • Heat conduction of an adiabatic rod of length \(L \) 172
 • Heat conduction in an infinitely long rod 175
 • Maximum of temperature of the heat-pole-solution 176
 • Heat waves in the Earth .. 177
 7.1.4 On the history of non-stationary heat conduction 179
 7.2 Heat Exchangers ... 179
 7.2.1 Heat transport coefficients and heat transfer coefficient 179
 7.2.2 Temperature gradients in the flow direction 181
 7.2.3 Temperatures along the heat exchanger 182
 7.3 Radiation ... 184
 7.3.1 Coefficients of spectral emission and absorption 184
 7.3.2 Kirchhoff’s law .. 186
 7.3.3 Averaged emission coefficient and averaged
 absorption number .. 187
 7.3.4 Examples of thermodynamics of radiation 190
 • Temperature of the sun and its planets 190
 • A comparison of radiation and conduction 192
 7.3.5 On the history of heat radiation ... 193
 7.4 Utilization of Solar Energy .. 194
 7.4.1 Availability ... 194
 7.4.2 Thermosiphon .. 195
 7.4.3 Green house .. 196
 7.4.4 Focusing collectors. The burning glass 198
8. Mixtures, solutions, and alloys ... 199
 8.1 Chemical potentials ... 199
 8.1.1 Characterization of mixtures ... 199
 8.1.2 Chemical potentials. Definition and relation to
 Gibbs free energy .. 200
 8.1.3 Chemical potentials; eight useful properties 201
 8.1.4 Measuring chemical potentials .. 203
8.2 Quantities of mixing. Chemical potentials of ideal mixtures 204
 8.2.1 Quantities of mixing ... 204
 8.2.2 Quantities of mixing of ideal gases .. 206
 8.2.3 Ideal mixtures ... 207
 8.2.4 Chemical potentials of ideal mixtures 207
8.3 Osmosis ... 208
 8.3.1 Osmotic pressure in dilute solutions. Van’t Hoff’s law 208
 8.3.2 Applications of osmosis ... 210
 • Pfeffer’s tube ... 210
 • A “perpetuum mobile” based on osmosis 212
 • Physiological salt solution ... 213
 • Osmosis as a competition of energy and entropy 213
 • Desalination .. 215
8.4 Mixtures in different phases ... 216
 8.4.1 Gibbs phase rule ... 216
 8.4.2 Degrees of freedom .. 217
8.5 Liquid-vapor equilibrium (ideal) ... 218
 8.5.1 Ideal Raoult law ... 218
 8.5.2 Ideal phase diagrams for binary mixtures 219
 8.5.3 Evaporation in the \((p,T)\)-diagram .. 221
 8.5.4 Saturation pressure decrease and boiling temperature increase 222
8.6 Distillation, an application of Raoult’s law 223
 8.6.1 mol as a unit .. 223
 8.6.2 Simple application of Raoult’s law ... 224
 8.6.3 Batch distillation .. 224
 8.6.4 Continuous distillation and the separating cascade 227
 8.6.5 Rectification column .. 229
8.7 Liquid-vapor equilibrium (real) ... 231
 8.7.1 Activity and fugacity .. 231
 8.7.2 Raoult’s law for non-ideal mixtures .. 232
 8.7.3 Determination of the activity coefficient 232
 8.7.4 Determination of fugacity coefficients 234
 8.7.5 Activity coefficient and heat of mixing. Construction of a phase diagram ... 234
 8.7.6 Henry coefficient ... 236
8.8 Gibbs free energy of a binary mixture in two phases 238
 8.8.1 Graphical determination of equilibrium states 238
 8.8.2 Graphical representation of chemical potentials 241
 8.8.3 Phase diagram with unrestricted miscibility 241
 8.8.4 Miscibility gap in the liquid phase ... 243
8.9 Alloys ... 243
 8.9.1 \((T, c_1)\)-diagrams ... 243
 8.9.2 Solid solutions and the eutectic point 246
8.9.3 Gibbs phase rule for a binary mixture ... 247
8.10 Ternary Phase Diagrams ... 247
8.10.1 Representation .. 247
8.10.2 Miscibility gaps in ternary solutions ... 248

9. Chemically reacting mixtures ... 251

9.1 Stoichiometry and law of mass action ... 251
9.1.1 Stoichiometry .. 251
9.1.2 Application of stoichiometry. Respiratory quotient RQ 253
9.1.3 Law of mass action ... 253
9.1.4 Law of mass action for ideal mixtures and mixtures of ideal gases ... 254
9.1.5 On the history of the law of mass action 255
9.1.6 Examples for the law of mass action for ideal gases 256
 • From hydrogen and iodine to hydrogen iodide and vice versa 256
 • Decomposition of carbon dioxide into carbon monoxide and oxygen ... 257
9.1.7 Equilibrium in stoichiometric mixtures of ideal gases 258
9.2 Heats of reaction, entropies of reaction, and absolute values of entropies ... 260
9.2.1 The additive constants in u and s ... 260
9.2.2 Heats of reaction ... 262
9.2.3 Entropies of reaction ... 263
9.2.4 Le Chatelier’s principle of least constraint 264
9.3 Nernst’s heat theorem. The Third Law of thermodynamics 264
9.3.1 Third Law in Nernst’s formulation ... 264
9.3.2 Application of the Third Law. The latent heat of the transformation gray \rightarrow white in tin ... 265
9.3.3 Third Law in PLANCK’s formulation .. 266
9.3.4 Absolute values of energy and entropy ... 267
9.4 Energetic and entropic contributions to equilibrium 267
9.4.1 Three contributions to the Gibbs free energy 267
 • $H_2 \rightarrow 2H$.. 269
 • $N_2 + 3H_2 \rightarrow 2NH_3$ Haber-Bosch synthesis of ammonia 270
9.4.2 Examples for minima of the Gibbs free energy 269
9.4.3 On the history of the Haber-Bosch synthesis 271
9.5 The fuel cell ... 272
9.5.1 Chemical Reactions .. 272
9.5.2 Various types of fuel cells .. 273
9.5.3 Thermodynamics .. 274
9.5.4 Effects of temperature and pressure ... 276
9.5.5 Power of the fuel cell ... 276
9.5.6 Efficiency of the fuel cell .. 277
9.6 Thermodynamics of photosynthesis .. 278
 9.6.1 The dilemma of glucose synthesis ... 278
 9.6.2 Balance of particle numbers .. 279
 9.6.3 Balance of energy. Why a plant needs lots of water 280
 9.6.4 Balance of entropy. Why a plant needs air 282
 9.6.5 Discussion .. 283

10. Moist air .. 285
 10.1 Characterization of moist air .. 285
 10.1.1 Moisture content ... 285
 10.1.2 Enthalpy of moist air .. 285
 10.1.3 Table for moist air ... 286
 10.1.4 The \((h_{1+x}, x) \)-diagram .. 288
 10.2 Simple processes in moist air ... 289
 10.2.1 Supply of water ... 289
 10.2.2 Heating .. 290
 10.2.3 Mixing ... 290
 10.2.4 Mixing of moist air with fog ... 291
 10.3 Evaporation limit and cooling limit .. 291
 10.3.1 Mass balance and evaporation limit 291
 10.3.2 Energy balance and cooling limit ... 292
 10.4 Two Instructive Examples: Sauna and Cloud Base 294
 10.4.1 A sauna is prepared .. 294
 10.4.2 Cloud base .. 295
 10.5 Rules of thumb ... 297
 10.5.1 Alternative measures of moisture .. 297
 10.5.2 Dry adiabatic temperature gradient 298
 10.6 Pressure of saturated vapor in the presence of air 299

11. Selected problems in thermodynamics .. 301
 11.1 Droplets and bubbles ... 301
 11.1.1 Available free energy .. 301
 11.1.2 Necessary and sufficient conditions for equilibrium 302
 11.1.3 Available free energy as a function of radius 302
 11.1.4 Nucleation barrier for droplets .. 304
 11.1.5 Nucleation barrier for bubbles .. 305
 11.1.6 Discussion .. 306
 11.2 Fog and clouds. Droplets in moist air .. 306
 11.2.1 Problem .. 306
 11.2.2 Available free energy. Equilibrium conditions 307
 11.2.3 Water vapor pressure in phase equilibrium 308
 11.2.4 The form of the available free energy 308
 11.2.5 Nucleation barrier and droplet radius 311
 11.3 Rubber balloons ... 312
 11.3.1 Pressure-radius relation .. 312
11.3.2 Stability of a balloon ... 315
11.3.3 A suggestive argument for the stability of a balloon 317
11.3.4 Equilibria between interconnected balloons 320

11.4 Sound ... 322
11.4.1 Wave equation ... 322
11.4.2 Solution of the wave equation, d’Alembert method 325
11.4.3 Plane harmonic waves .. 326
11.4.4 Plane harmonic sound waves .. 327

11.5 Landau theory of phase transitions .. 329
11.5.1 Free energy and load as functions of temperature and strain
 Phase transitions of first and second order 329
11.5.2 Phase transitions of first order ... 329
11.5.3 Phase transitions of second order ... 332
11.5.4 Phase transitions under load .. 334
11.5.5 A remark on the classification of phase transitions 334

11.6 Swelling and shrinking of gels .. 335
11.6.1 Phenomenon ... 335
11.6.2 Gibbs free energy .. 337
11.6.3 Swelling and shrinking as function of temperature 340

12. Thermodynamics of irreversible processes 343
12.1 Single fluids ... 343
12.1.1 The laws of FOURIER and NAVIER-STOKES 343
12.1.2 Shear flow and heat conduction between parallel plates 345
12.1.3 Absorption and dispersion of sound 347
12.1.4 Eshelby tensor ... 349

12.2 Mixtures of Fluids .. 351
12.2.1 The laws of Fourier, Fick, and Navier-Stokes 351
12.2.2 Diffusion coefficient and diffusion equation 354
12.2.3 Stationary heat conduction coupled with diffusion
 and chemical reaction ... 356

12.3 Flames ... 358
12.3.1 Chapman-Jouguet equations ... 358
12.3.2 Detonations and flames ... 360
12.3.3 Equations of balance inside the flame 361
 • Balance of fuel mass .. 362
 • Energy conservation .. 362
12.3.4 Dimensionless equations .. 363
12.3.5 Solutions .. 364
12.3.6 On the precarious nature of a flame 366

12.4 A model for linear visco-elasticity .. 366
12.4.1 Internal variable ... 366
12.4.2 Rheological equation of state ... 368
12.4.3 Creep and stress relaxation .. 369
12.4.4 Stability conditions ... 371
12.4.5 Irreversibility of creep ... 371
12.4.6 Frequency-dependent elastic modulus and the complex elastic
 modulus ... 373
12.5 Shape memory alloys ... 374
 12.5.1 Phenomena and applications ... 374
 12.5.2 A model for shape memory alloys ... 378
 12.5.3 Entropic stabilization ... 379
 12.5.4 Pseudoelasticity ... 382
 12.5.5 Latent heat ... 385
 12.5.6 Kinetic theory of shape memory ... 387
 12.5.7 Molecular dynamics ... 391

Index .. 395