Springer Series in
MATERIALS SCIENCE

The Springer Series in Materials Science covers the complete spectrum of materials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials.

88 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena
By P. Sheng

89 Magneto-Science
Magnetic Field Effects on Materials: Fundamentals and Applications
Editors: M. Yamaguchi and Y. Tanimoto

90 Internal Friction in Metallic Materials
A Reference Book
By M.S. Blanter, I.S. Golovin, H. Neuhäuser, and H.-R. Sinning

91 Time-dependent Mechanical Properties of Solid Bodies
By W. Gräfe

92 Solder Joint Technology
Materials, Properties, and Reliability
By K.-N. Tu

93 Materials for Tomorrow
Theory, Experiments and Modelling
Editors: S. Gemming, M. Schreiber and J.-B. Suck

94 Magnetic Nanostructures
Editors: B. Aktas, L. Tagirov, and F. Mikailov

95 Nanocrystals and Their Mesoscopic Organization

96 GaN Electronics
By R. Quay

97 Multifunctional Barriers for Flexible Structure
Textile, Leather and Paper
Editors: S. Duquesne, C. Magniez, and G. Camino

98 Physics of Negative Refraction and Negative Index Materials
Optical and Electronic Aspects and Diversified Approaches
Editors: C.M. Krowne and Y. Zhang

99 Self-Organized Morphology in Nanostructured Materials
Editors: K. Al-Shamery and J. Parisi

100 Self Healing Materials
An Alternative Approach to 20 Centuries of Materials Science
Editor: S. van der Zwaag

101 Organic Nanostructures for Next Generation Devices
Editors: K. Al-Shamery, H.-G. Rubahn, and H. Sitter

102 Photonic Crystal Fibers
Properties and Applications
By F. Poli, A. Cucinotta, and S. Selleri

103 Polarons in Advanced Materials
Editor: A.S. Alexandrov

104 Transparent Conductive Zinc Oxide
Basics and Applications in Thin Film Solar Cells
Editors: K. Ellmer, A. Klein, and B. Rech

105 Dilute III–V Nitride Semiconductors and Novel Dilute Nitride Material Systems
Physics and Technology
Editor: A. Erol

106 Into The Nano Era
Moore's Law Beyond Planar Silicon CMOS
Editor: H.R. Huff

Volumes 40–87 are listed at the end of the book.
Katharina Al-Shamery
Horst-Günter Rubahn
Helmut Sitter
Editors

Organic Nanostructures
for Next Generation Devices

With 221 Figures and 6 Tables
Preface

This book is concerned with organic nanoaggregates, showing how to master their growth and expanding on their ability to form central building blocks of next generation submicron-scaled devices. It samples reports and views of the central scientific groups working in this field and provides a complete overview of the state-of-the art of basic research and applications.

As compared to their inorganic counterparts, organic materials are by far superior in that they show extremely large design flexibility, very good possibilities for integration into devices, and brilliant performance. Organic molecules exhibit high luminescence efficiencies at low material densities, flexible spectroscopy and are easy and cheap to process.

The growth of organic matter into nanowires, nanotubes, or nanofibers with widths and heights in the lower nanometer regime and lengths up to several microns is a rather recent development. However, the number of studies on these topics has rapidly increased within the last few years. This development is parallel to that happening within the field of inorganic nanowires or carbon nanotubes. In both cases, the time span between the first discovery of how to grow those nanowired materials and their prototypical commercial application was no longer than a few years. Numerous examples can be found for carbon nanotubes. In the case of inorganic semiconducting nanowires, the number of examples such as simple logical gates, UV-light emitting nanolasers or sensors to detect explosives is also rapidly increasing. Such tendencies promise a huge consumer market.

In this volume the contributions focus on organic electroluminescent nanostructures, their fabrication as well as properties, use, and implications. Among the basic problems are those concerned with finding appropriate conditions for self-assembled growth, understanding the interaction with the support as well as neighbouring molecules, and detaching the resulting nanostructures from their growth templates. Anisotropic luminescence, wave-guiding, nonlinear optical response, random lasing, electrical mobility, and mechanical stability are subsequently discussed, thus paving the route from basic nanomaterials properties to optimized working devices.
The book starts with two tutorials aiming to make it easier for a broad readership to enter the literature of thin organic film growth as well as characterization methods of organic thin films. Part II (Chaps. 3–8) gives an overview on self-assembled growth of nanostructures from rod-like molecular building blocks as well as the crystallography of exemplary organic nanowires. This includes a chapter on how to chemically modify molecular building blocks to influence the linear and nonlinear optical properties as well as the fibre shapes. Lasing and nano-optical aspects are discussed in Chaps. 9 and 10 (Part III: Optics). The book ends with a part on first examples of device-oriented studies, enlightening the high potential of this new type of nanoscaled organic material. The editors would like to express their special thanks to Dr. Frank Balzer who did a tremendous work in assembling the manuscripts into a homogeneous book.

Oldenburg, Sonderborg, Linz, Katharina Al-Shamery
June 2007 Horst-Günter Rubahn
Helmut Sitter
Contents

List of Acronyms and Symbols .. XVII

Part 1 Introduction

1 Fundamentals of Organic Film Growth and Characterisation
H. Sitter, R. Resel, G. Koller, M.G. Ramsey, A. Andreev, and C. Teichert 3
1.1 General .. 3
1.2 Nucleation Process and Growth Modes 4
1.3 The Surface Science Approach 7
 1.3.1 In Situ UHV MBE .. 8
 1.3.2 Valence Band Photoemission (ARUPS) 9
 1.3.3 Near Edge X-Ray Absorption
 Fine Structure Spectroscopy (NEXAFS) 12
 1.3.4 Scanning Tunnelling Microscopy 14
1.4 Crystallographic Characterisation 15
1.5 Fundamentals of Atomic Force Microscopy 16
References ... 18

2 Optical Characterization Methods for Ultrathin Nanoaggregates
H.-G. Rubahn ... 21
2.1 Dark Field and Fluorescence Microscopy 21
2.2 Two-Photon Microscopy 22
2.3 Scanning Near-Field Optical Microscopy 24
2.4 Two-Photon Near-Field Microscopy 25
References ... 28
Part II Growth

3 Growth of Oriented Organic Nanoaggregates via Molecular Beam Deposition
F. Balzer .. 31
3.1 Introduction ... 31
3.2 Adsorbates ... 32
3.3 Silicate Substrates 34
3.4 Phenylens on Muscovite 36
 3.4.1 Para-Hexaphenylene 36
 3.4.2 Steps and Defects 43
 3.4.3 Kinetics .. 45
 3.4.4 Growth Model ... 51
3.5 Thiophenes on Muscovite 53
3.6 Micorings ... 56
3.7 Au-Mica Heterostructures 58
3.8 Conclusions .. 60
References .. 62

4 Tailored Organic Nanoaggregates Generated by Self-Assembly of Designed Functionalised p-Quaterphenylenes on Muscovite Mica Substrates
K. Al-Shamery, M. Schiek, R. Koch, and A. Lützen 67
4.1 Introduction ... 67
4.2 Design ... 68
4.3 Synthesis of Oligomers 70
4.4 Vapour Deposition Studies 72
4.5 Nanoaggregates from Symmetrically Functionalised Oligomers .. 73
4.6 Nanoaggregates from Non-Symmetrically Functionalised Oligomers .. 78
4.7 Non-Linear Optical Properties 80
4.8 Quantum Chemical Calculations and Optical Properties 82
4.9 Conclusion .. 83
References .. 84

5 Hot-Wall Epitaxial Growth of Films of Conjugated Molecules
H. Sitter .. 89
5.1 Introduction: Why Highly Ordered Organic Thin Films? 89
5.2 Experimental Setup ... 90
 5.2.1 Hot-Wall Epitaxy 90
 5.2.2 Source Materials and Substrates 93
 5.2.3 Characterization Methods 94
5.3 Pristine and Ba-Doped C_{60} Layers 95
 5.3.1 C_{60} Films on Mica Substrates 95
5.3.2 Doping of C\textsubscript{60} with Ba 98
5.4 Highly Ordered Films of Para-Sexiphenyl 100
5.4.1 Needles and Islands of p-6P on KCl Substrates 102
5.4.2 Islands and Nanofibers of p-6P on Mica Substrates 106
5.5 Conclusion ... 114
References ... 116

6 Crystallography of Ultrathin Organic Films
and Nanoaggregates
T. Haber and R. Resel .. 119
6.1 Overview .. 120
6.2 Crystal Structure of Rodlike Conjugated Molecules 122
6.2.1 Oligoacenes .. 124
6.2.2 Oligophenylene 124
6.2.3 Oligothiophenes 125
6.3 Experimental Methods 126
6.3.1 Fundamentals .. 126
6.3.2 Specular Scans .. 127
6.3.3 Rocking Curves 128
6.3.4 Pole Figure Technique 130
6.3.5 Surface Diffraction 131
6.3.6 Line Profile Analysis 132
6.3.7 Transmission Electron Microscopy 134
6.4 Crystallographic Order within Nanoaggregates 137
6.4.1 Out-of-Plane Order 138
6.4.2 In-Plane Order (Organic Epitaxy) 140
6.4.3 Relation Between Crystal Structure
and Film Morphology .. 145
6.4.4 Crystallite Size 148
6.4.5 Polymorphism .. 152
6.5 Early Stage Growth 153
6.6 Conclusion .. 158
References ... 159

7 Growth and Electronic Structure
of Homo- and Hetero-epitaxial Organic Nanostructures
G. Koller and M.G. Ramsey 165
7.1 Introduction ... 165
7.2 Organic Films on Inorganic Substrates 166
7.2.1 The Substrate as a Template 167
7.2.2 Structure and Morphology Determinants:
Sticking vs. Diffusion Anisotropy 171
7.2.3 The Electronic Structure 178
7.2.4 The Electronic Band Alignment
on Nanostructured Interfaces 182
7.3 Organic–Organic Heteroepitaxy .. 185
 7.3.1 Growth on Closed –CH-terminated Organic Surfaces 186
 7.3.2 Growth on Open π-terminated Organic Surfaces 187
7.4 Outlook .. 191
References ... 191

8 Mechanisms Governing the Growth
of Organic Oligophenylene “Needles” on Au Substrates
K. Hänel and C. Wöll .. 195
8.1 Introduction ... 195
8.2 Experimental .. 197
8.3 The Importance of Molecular Conformations in P4P 198
8.4 Molecular Orientation and Conformation
 within Ultrathin P4P Films Grown on Gold Substrates:
 Studies using Soft X-ray Absorption Spectroscopy 198
 8.4.1 Ultrathin Layer Containing only the α-Species 199
 8.4.2 Full Monolayer Containing α- and β-Species 202
 8.4.3 Multilayers ... 202
8.5 The Orientation of Organic Oligophenylene “Needles”
 on Gold Substrates .. 203
8.6 Manipulation of Organic Needles
 Using an STM Operated under SEM Control 206
 8.6.1 STM Studies of P4P Needles 207
 8.6.2 Manipulation of STM Needles 211
 8.6.3 STM Investigations of the Former Contact Area 214
References ... 215

Part III Optics

9 Nanooptics Using Organic Nanofibers
K. Thilsing-Hansen, S.I. Bozhevolnyi, and H.-G. Rubahn 219
9.1 Morphology and Optical Response 219
 9.1.1 Static Response .. 219
 9.1.2 Dynamic Response .. 220
9.2 Guiding of Electromagnetic Waves 225
9.3 Spatial Distribution of Molecular Emitters 228
9.4 The Optical Near Field of Nanofibers 231
 9.4.1 Single Photon Tunneling Microscopy 231
 9.4.2 Two-photon Near Field Microscopy 234
9.5 Conclusions .. 236
References ... 237
10 Optical Gain and Random Lasing in Self-Assembled Organic Nanofibers

F. Quochi, F. Cordella, A. Mura, and G. Bongiovanni .. 239

10.1 Introduction ... 239
10.2 Overview on Random Lasing 240
10.3 Experimental Techniques 241
10.4 Random Lasing and Amplified Spontaneous Emission in Close-Packed Organic Nanofibers 242
10.5 Optical Amplification and Random Laser Action in Single Organic Nanofibers 247
10.5.1 Coherent Random Lasing in Single Nanofibers 247
10.5.2 Optical Amplification in Single Nanofibers 252
10.6 Potential Applications of Self-assembled Organic Nanofibers ... 255
10.7 Summary and Conclusions 257

References .. 258

Part IV Applications

11 Fabrication and Characterization of Self-Organized Nanostructured Organic Thin Films and Devices

A. Andreev, C. Teichert, B. Singh, and N.S. Sariciftci .. 263

11.1 Introduction .. 263
11.2 Experimental Methods ... 265
11.2.1 Organic Materials and Growth Techniques 265
11.2.2 OFET: Device Fabrication 266
11.2.3 Electrical Characterization Using an OFET (Operating Principle) ... 267
11.2.4 Morphological Characterization of Organic Thin Films and Devices ... 270
11.2.5 Optical and Structural Characterization of Organic Thin Films and Devices 270
11.3 Anisotropy of Self-Organized Organic Thin Films 271
11.3.1 Anisotropic Epitaxial Growth of p-6P on Mica(001) 271
11.3.2 Anisotropic Epitaxial Growth of p-6P on KCl(001) 277
11.3.3 Anisotropic Epitaxial Growth of p-6P and p-4P on TiO₂ and Metal Surfaces 282
11.4 Luminescent and Lasing Properties of Anisotropic Organic Thin Films ... 285
11.5 Devices Based on Organic Thin Films 288
11.5.1 OFETs Based on C₅₀ Thin Films Grown by HWE 288
11.5.2 Anisotropic Current–Voltage Characteristics of p-6P Chains on Mica ... 292
11.6 Conclusions ... 295

References .. 296
12 Device-Oriented Studies on Electrical, Optical and Mechanical Properties of Individual Organic Nanofibers

12.1 Introduction ... 301
12.2 Toward Photonic Devices:
 The Optical Properties of Isolated Nanofibers 303
 12.2.1 Preparation and Optical Detection 303
 12.2.2 Nanofiber Tomography and Angular Light Emission 304
12.3 Studies on Electrical Properties 309
 12.3.1 Charge Injection and Transport 309
 12.3.2 Experiments on Single-Nanofiber Devices 311
12.4 Nanofiber Mechanics .. 315
 12.4.1 2-D Manipulation 316
 12.4.2 3-D Manipulation 320
12.5 Conclusions .. 322
References .. 323

13 Device Treatment of Organic Nanofibers:
Embedding, Detaching, and Cutting
H. Sturm and H.-G. Rubahn 325
13.1 Introduction ... 325
13.2 Coating of Organic Nanofibers on Mica 327
 13.2.1 Parameters Related to the Embedding of Organic Nanofibers:
 Thermal Conductivity and Thermal Expansion 327
 13.2.2 Evaporation of Silicon Oxide 329
 13.2.3 Antibleaching Effect with SiO_x Coatings 330
 13.2.4 Microscopical Analysis of Nanofibers on Mica, Covered by SiO_x 330
13.3 Parameters Related to the Embedding of Organic Nanofibers:
 Preparation of Polymer Films 338
 13.3.1 Motivation for Encapsulation of Nanofibers in Polymers 338
 13.3.2 Essential and Desirable Polymer Properties,
 Preparation Strategies 340
13.4 Cutting of Nanofibers .. 342
13.5 Conclusions .. 345
References .. 346

Index .. 347
List of Contributors

Katharina Al-Shamery
University of Oldenburg
Institute of Pure
and Applied Chemistry
P.O. Box 2503
D-26111 Oldenburg, Germany
katharina.al.shamery@uni-oldenburg.de

Andrei Andreev
University of Leoben
Institute of Physics
Franz-Josef-Str. 18
A-8700 Leoben, Austria
andrey.andreev@mu-leoben.at

Frank Balzer
University of Southern Denmark
NanoSYD, Mads Clausen Institute
Alsion 2
DK-6400 Sonderborg, Denmark
fbalzer@mci.sdu.dk

Peter Bøggild
Technical University of Denmark
MIC, Department of Micro-
and Nanotechnology
DTU – Building 345east
DK-2800 Kongens Lyngby, Denmark
boggild@mic.dtu.dk

Giovanni Bongiovanni
Università di Cagliari
Dipartimento di Fisica
I-09042 Monserrato (CA), Italy
giovanni.bongiovanni@dsf.unica.it

Sergey I. Bozhevolnyi
Aalborg University
Department of Physics
and Nanotechnology
Skjernvej 4A
DK-9220 Aalborg East, Denmark
sergey@physics.aau.dk

Jonathan Brewer
University of Southern Denmark
NanoSYD, Mads Clausen Institute
Alsion 2
DK-6400 Sonderborg, Denmark
brewer@ifk.sdu.dk

Fabrizio Cordella
Università di Cagliari
Dipartimento di Fisica
I-09042 Monserrato (CA), Italy
fabrizio.cordella@dsf.unica.it
Thomas Haber
Graz University of Technology
Institute of Solid Sate Physics
Petersgasse 16
A-8010 Graz, Austria
haber@tugraz.at

Kathrin Hänel
Ruhr-University Bochum
Physical Chemistry I
Universitätsstraße 150
D-44801 Bochum, Germany

Henrik H. Henrichsen
Technical University of Denmark
MIC, Department of Micro-
and Nanotechnology,
DTU – Building 345east
DK-2800 Kongens Lyngby, Denmark
henrik.henrichsen@mic.dtu.dk

Jakob Kjelstrup-Hansen
University of Southern Denmark
NanoSYD, Mads Clausen Institute
Alsion 2
DK-6400 Sønderborg, Denmark
jkh@mci.sdu.dk

Rainer Koch
University of Oldenburg
Institute of Pure
and Applied Chemistry
P.O. Box 2503
D-26111 Oldenburg, Germany
rainer.koch@uni-oldenburg.de

Georg Koller
Karl-Franzens University Graz
Institute of Physics
Surface and Interface Physics
Universitätsplatz 5
A-8010 Graz, Austria
georg.koller@uni-graz.at

Arne Lützen
University of Bonn
Kekulé-Institute
of Organic Chemistry
and Biochemistry
Gerhard-Domagk-Str. 1
D-53121 Bonn, Germany
arne.luetzen@uni-bonn.de

Andrea Mura
Università di Cagliari
Dipartimento di Fisica
I-09042 Monserrato (CA), Italy
andrea.mura@dsf.unica.it

Francesco Quochi
Università di Cagliari
Dipartimento di Fisica
I-09042 Monserrato (CA), Italy
francesco.quochi@dsf.unica.it

Michael G. Ramsey
Karl-Franzens University Graz
Institute of Physics
Surface and Interface Physics
Universitätsplatz 5
A-8010 Graz, Austria
michael.ramsey@uni-graz.at

Roland Resel
Graz University of Technology
Institute of Solid-Sate Physics
Petersgasse 16
A-8010 Graz, Austria
roland.resel@tugraz.at

Horst-Günter Rubahn
University of Southern Denmark
NanoSYD, Mads Clausen Institute
Alsion 2
DK-6400 Sønderborg, Denmark
rubahn@mci.sdu.dk
Niyazi Serdar Sariciftci
Institute for Physical Chemistry and Linz Institute for Organic Solar Cells
Altenbergerstr. 69
A-4040 Linz, Austria
serdar.sariciftci@jku.at

Manuela Schiek
University of Southern Denmark NanoSYD, Mads Clausen Institute Alsion 2
DK-6400 Sønderborg, Denmark
schiek@mci.sdu.dk

Birendra Singh
Institute for Physical Chemistry and Linz Institute for Organic Solar Cells
Altenbergerstr. 69
A-4040 Linz, Austria
birendra.singh@jku.at

Helmut Sitter
Johannes Kepler University Linz Institute of Semiconductor- and Solid-State Physics
Altenbergerstr. 69
A-4040 Linz, Austria
helmut.sitter@jku.at

Heinz Sturm
Federal Institute of Materials Research (BAM)
FG VI.2
Unter den Eichen 87
D-12205 Berlin, Germany
heinz.sturm@bam.de

Christian Teichert
University of Leoben
Institute of Physics Franz-Josef-Straße 18
A-8700 Leoben, Austria
teichert@unileoben.ac.at

Kasper Thilsing-Hansen
University of Southern Denmark NanoSYD, Mads Clausen Institute Alsion 2
DK-6400 Sønderborg, Denmark
kth@mci.sdu.dk

Christof Wöll
Ruhr-University Bochum
Physical Chemistry I
Universitätsstraße 150
44801 Bochum, Germany
woell@pc.rub.de
List of Acronyms and Symbols

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4P</td>
<td>para-quaterphenylene</td>
</tr>
<tr>
<td>5P</td>
<td>para-quinquephenylene</td>
</tr>
<tr>
<td>6P</td>
<td>para-hexaphenylene, para-sexiphenylene</td>
</tr>
<tr>
<td>4T</td>
<td>α-quaterthiophene</td>
</tr>
<tr>
<td>6T</td>
<td>α-sexithiophene</td>
</tr>
<tr>
<td>α-4T</td>
<td>α-quaterthiophene</td>
</tr>
<tr>
<td>α-6T</td>
<td>α-sexithiophene</td>
</tr>
<tr>
<td>AES</td>
<td>Auger electron spectroscopy</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>ARUPS</td>
<td>Angular resolved UPS</td>
</tr>
<tr>
<td>ASE</td>
<td>Amplified spontaneous emission</td>
</tr>
<tr>
<td>BCB</td>
<td>Divinyltetramethyldisiloxane-bis(benzocyclobutane)</td>
</tr>
<tr>
<td>CG-mode</td>
<td>Columnar growth mode</td>
</tr>
<tr>
<td>CLP4</td>
<td>1,4''''-dichloro-4,1''':4',1''':4'',1''''-quaterphenylene</td>
</tr>
<tr>
<td>CNP4</td>
<td>1,4''''-dicyano-4,1''':4',1''':4'',1''''-quaterphenylene</td>
</tr>
<tr>
<td>cw</td>
<td>Continuous wave</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>DPO</td>
<td>2,5-diphenyl-1,3,4-oxadiazine</td>
</tr>
<tr>
<td>EBSD</td>
<td>Electron backscatter diffraction</td>
</tr>
<tr>
<td>EPD</td>
<td>Enhanced pole density</td>
</tr>
<tr>
<td>ESEM</td>
<td>Environmental scanning electron microscope</td>
</tr>
<tr>
<td>FET</td>
<td>Field-effect transistor</td>
</tr>
<tr>
<td>FH</td>
<td>Fundamental harmonic</td>
</tr>
<tr>
<td>FM-mode</td>
<td>Frank-van der Merwe mode</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>GID</td>
<td>Grazing incidence diffraction</td>
</tr>
<tr>
<td>HAS</td>
<td>Helium atom scattering</td>
</tr>
<tr>
<td>HLG</td>
<td>HOMO–LUMO gap</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>HOPG</td>
<td>Highly ordered pyrolytic graphite</td>
</tr>
</tbody>
</table>
HRXD High resolution XRD
HWBE Hot-wall beam epitaxy
HWE Hot-wall epitaxy
ILC Injection limited current
IR Infrared
ITO Indium tin oxide
KAP Potassium acid phthalate
LEED Low energy electron diffraction
LPA Line profile analysis
LSM Laser scanning microscope
LUMO Lowest unoccupied molecular orbital
MBE Molecular beam epitaxy
ML Monolayer
MOCLP4 1-chloro,4′′′-methoxy-4,1′:4′,1″:4″,1‴-quaterphenylene
MOCNP4 1-cyano,4′′′-methoxy-4,1′:4′,1″:4″,1‴-quaterphenylene
MONHP4 1-amino,4′′′-methoxy-4,1′:4′,1″:4″,1‴-quaterphenylene
MOP4 1,4″-dimethoxy-4,1′:4′,1″:4″,1‴-quaterphenylene
NA Numerical aperture
NC-AFM Non-contact AFM
NEXAFS Near edge X-ray absorption fine structure spectroscopy
NLO Nonlinear optics
NMeP4 1,4‴-bis(N,N-dimethylamino)-4,1′:4′,1″:4″,1‴-quaterphenylene
OFET Organic field-effect transistor
OLED Organic light-emitting diode
OMBD Organic molecular beam deposition
OMBE Organic molecular beam epitaxy
P2P Biphenyl
p4P, P4P, p-4P para-quaterphenylene
p5P, P5P, p-5P para-quinquephenylene
p6P, P6P, p-6P para-hexaphenylene, para-sexiphenylene
PAX Photoemission of adsorbed Xenon
PES Photoelectron spectroscopy
PL Photoluminescence
PMMA Polymethylmethacrylate
PMT Photomultiplier tube
PS Polystyrene
PSP para-sexiphenyl
PSTM Photon-scanning tunneling microscope
PT Piezoelectric tube
PTCDA Perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride
PTFE Hexafluoroethylene
PTV Poly(2,5-thienylene vinylene)
RDS Reflection difference spectroscopy
RFID Radio frequency identification device
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHEED</td>
<td>Reflection high energy electron diffraction</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected area electron diffraction</td>
</tr>
<tr>
<td>SCL</td>
<td>Space-charge limited</td>
</tr>
<tr>
<td>SCLC</td>
<td>Space-charge limited current</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SF-mode</td>
<td>Step flow mode</td>
</tr>
<tr>
<td>SFG</td>
<td>Sum frequency generation</td>
</tr>
<tr>
<td>SHG</td>
<td>Second harmonic generation</td>
</tr>
<tr>
<td>SK-mode</td>
<td>Stranski-Krastanov mode</td>
</tr>
<tr>
<td>SNOM</td>
<td>Scanning near field optical microscope</td>
</tr>
<tr>
<td>SPA-LEED</td>
<td>Spot profile analysis LEED</td>
</tr>
<tr>
<td>STM</td>
<td>Scanning tunneling microscope</td>
</tr>
<tr>
<td>TED</td>
<td>Transmission electron diffraction</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscope</td>
</tr>
<tr>
<td>TDS</td>
<td>Thermal desorption spectroscopy</td>
</tr>
<tr>
<td>TPI</td>
<td>Two-photon intensity</td>
</tr>
<tr>
<td>TPI-SNOM</td>
<td>Two-photon intensity near field optical microscope</td>
</tr>
<tr>
<td>UHV</td>
<td>Ultra high vacuum</td>
</tr>
<tr>
<td>UPS</td>
<td>Ultraviolet photoemission spectroscopy</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VM-mode</td>
<td>Volmer-Weber mode</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoemission spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>