Spatial Cognition

An Interdisciplinary Approach to Representing and Processing Spatial Knowledge
Preface

Research on spatial cognition is a rapidly evolving interdisciplinary enterprise for the study of spatial representations and cognitive spatial processes, be they real or abstract, human or machine. Spatial cognition brings together a variety of research methodologies: empirical investigations on human and animal orientation and navigation; studies of communicating spatial knowledge using language and graphical or other pictorial means; the development of formal models for representing and processing spatial knowledge; and computer implementations to solve spatial problems, to simulate human or animal orientation and navigation behavior, or to reproduce spatial communication patterns.

These approaches can interact in interesting and useful ways: Results from empirical studies call for formal explanations both of the underlying memory structures and of the processes operating upon them; we can develop and implement operational computer models obeying the relationships between objects and events described by the formal models; we can empirically test the computer models under a variety of conditions, and we can compare the results to the results from the human or animal experiments. A disagreement between these results can provide useful indications towards the refinement of the models.

The insight we gain in doing basic research on spatial cognition has a potential towards a great variety of applications. Without understanding human spatial cognition we will not be able to develop appropriate technology and interfaces for spatial information systems that communicate with humans by language and graphics in natural and efficient ways. Autonomous robots finding their ways in an unknown environment require abilities to infer locations of objects from incomplete and qualitative information from various sources and to follow imprecise instructions much like human beings. To use maps and other diagrams for the communication with computers we must understand how people generate and interpret them. To fully exploit the potential of virtual reality technology we must adapt its capabilities to human conceptions of space. To develop computers programmed by spatial structures rather than by sequential instructions we must more fully understand the relevant aspects of space.

In 1996, the Deutsche Forschungsgemeinschaft (DFG) established a priority program on spatial cognition to promote interdisciplinary research in this field. Fifteen research projects at thirteen research institutions across Germany cooperate in this program. In Fall 1997, a colloquium was held at the University of Trier. Fifteen projects from the priority program, two thematically related projects from other DFG programs, and five invited experts from other countries presented and discussed their work. After the discussions at the colloquium, the contributions were revised and underwent an anonymous reviewing and revision procedure. The resulting papers are collected in this volume.

The volume consists of 22 contributions and is structured into three sections: Spatial knowledge acquisition and spatial memory, Formal and linguistic models, and Navigation in real and virtual worlds. The first section consists of contribu-
tions describing empirical investigations and representations derived from such
investigations; knowledge acquisition, memory organization, and spatial refer-
ence systems are addressed. The second section presents formal approaches to
structuring spatial knowledge; the connection between language and spatial con-
cepts and the formal organization of spatial concepts are addressed in this sec-
tion. The third section brings together empirical and application-oriented views
of navigation; the connections to robotics on one hand and to virtual reality on
the other hand are addressed here.

We would like to thank all the authors for their careful work and for keeping
our very tight deadlines. We thank our reviewers for their insightful and thorough
comments which they prepared on a short notice. We thank Karin Schon for her
superb editorial support and for motivating the authors to give this project
top priority in their schedules. We thank the LNAI series editor Jörg Siekmann
for proposing the publication of this volume in the Lecture Notes in Artificial
Intelligence, and we thank Alfred Hofmann and Springer-Verlag for supporting
our project and for helpful suggestions. Finally, we gratefully acknowledge the
support by the Deutsche Forschungsgemeinschaft and we thank the reviewers
and the administrator of the DFG priority program on spatial cognition for
valuable advice.

April 1998

Christian Freksa
Christopher Habel
Karl F. Wender
Contents

Spatial Knowledge Acquisition and Spatial Memory

Roberta L. Klatzky
Allocentric and egocentric spatial representations:
Definitions, distinctions, and interconnections............................ 1

Karin Schweizer, Theo Herrmann, Gabriele Janzen, and Steffi Katz
The route direction effect and its constraints................................. 19

Silvia Mecklenbräuker, Werner Wippich, Monika Wagener, and
Jörg E. Saathoff
Spatial information and actions .. 39

Jörg Gehrke and Bernhard Hommel
The impact of exogenous factors on spatial coding in perception and
memory .. 63

Rainer Rothkegel, Karl F. Wender, and Sabine Schumacher
Judging spatial relations from memory .. 79

Steffen Werner, Christina Saade, and Gerd Läuer
Relations between the mental representation of extrapersonal space and
spatial behavior ... 107

Andreas Eisenkolb, Alexandra Musto, Kerstin Schill, Daniel Hernández, and
Wilfried Brauer
Representational levels for the perception of the courses of motion 129

Formal and Linguistic Models

Barbara Tversky and Paul U. Lee
How space structures language ... 157

Carola Eschenbach, Christopher Habel, Lars Kulik, and Annette Lefkimmiotis
Shape nouns and shape concepts: A geometry for ‘corner’ 177

Constanze Vorwerg and Gert Rickheit
Typicality effects in the categorization of spatial relations 203

Hubert D. Zimmer, Harry R. Speiser, Jörg Baus, Anselm Blocher, and
Eva Stopp
The use of locative expressions in dependence of the spatial relation
between target and reference object in two-dimensional layouts 223
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berry Claus, Klaus Eyferth, Carsten Gips, Robin Hörnig, Ute Schmid,</td>
<td>Reference frames for spatial inference in text understanding</td>
<td>241</td>
</tr>
<tr>
<td>Sylvia Wiebrock, and Fritz Wysotzki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Markus Knauff, Reinhold Rauh, Christoph Schlieder, and Gerhard Strube</td>
<td>Mental models in spatial reasoning</td>
<td>267</td>
</tr>
<tr>
<td>Andrew U. Frank</td>
<td>Formal models for cognition - taxonomy of spatial location description</td>
<td>293</td>
</tr>
<tr>
<td>and frames of reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bettina Berendt, Thomas Barkovsky, Christian Freksa, and Stephanie Kelter</td>
<td>Spatial representation with aspect maps</td>
<td>313</td>
</tr>
<tr>
<td>Benjamin Kuipers</td>
<td>A hierarchy of qualitative representations for space</td>
<td>337</td>
</tr>
<tr>
<td>Jochen Renz and Bernhard Nebel</td>
<td>Spatial reasoning with topological information</td>
<td>351</td>
</tr>
</tbody>
</table>

Navigation in Real and Virtual Worlds

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernd Krieg-Brückner, Thomas Röfer, Hans-Otto Carmesin, and Rolf Müller</td>
<td>A taxonomy of spatial knowledge for navigation and its application to the Bremen autonomous wheelchair</td>
<td>373</td>
</tr>
<tr>
<td>Lynne Nadel, K.G.F. Thomas, Holly E. Laurance, R. Skelton, T. Tal, and W. Jake Jacobs</td>
<td>Human place learning in a computer generated arena</td>
<td>399</td>
</tr>
<tr>
<td>Bernd Leplow, Doris Höll, Lingju Zeng, and Maximilian Mehdorn</td>
<td>Spatial orientation and spatial memory within a ‘locomotor maze’ for humans</td>
<td>429</td>
</tr>
<tr>
<td>Hanspeter A. Mallot, Sabine Gillner, Hendrik A.H.C. van Veen, and</td>
<td>Behavioral experiments in spatial cognition using virtual reality</td>
<td>447</td>
</tr>
<tr>
<td>Heinrich H. Bülthoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredrik Wartenberg, Mark May, and Patrick Péruch</td>
<td>Spatial orientation in virtual environments: Background considerations and experiments</td>
<td>469</td>
</tr>
</tbody>
</table>

Author Index .. 491