Jack E. Henningfield • Edythe D. London
Sakire Pogun
Editors

Nicotine
Psychopharmacology

Contributors

The fact that tobacco ingestion can affect how people feel and think has been known for millennia, placing the plant among those used spiritually, honorifically, and habitually (Corti 1931; Wilbert 1987). However, the conclusion that nicotine accounted for many of these psychopharmacological effects did not emerge until the nineteenth century (Langley 1905). This was elegantly described by Lewin in 1931 as follows: “The decisive factor in the effects of tobacco, desired or undesired, is nicotine…” (Lewin 1998). The use of nicotine as a pharmacological probe to understand physiological functioning at the dawn of the twentieth century was a landmark in the birth of modern neuropharmacology (Limbird 2004; Halliwell 2007), and led the pioneering researcher John Langley to conclude that there must exist some “receptive substance” to explain the diverse actions of various substances, including nicotine, when applied to muscle tissue (Langley 1905).

Research on tobacco and nicotine progressed throughout the twentieth century, but much of this was from a general pharmacological and toxicological rather than a psychopharmacological perspective (Larson et al. 1961). There was some attention to the effects related to addiction, such as euphoria (Johnston 1941), tolerance (Lewin 1931), and withdrawal (Finnegan et al. 1945), but outside of research supported by the tobacco industry, addiction and psychopharmacology were not major foci for research (Slade et al. 1995; Hurt and Robertson 1998; Henningfield et al. 2006; Henningfield and Hartel 1999; Larson et al. 1961). This situation changed rapidly in the 1970s and 1980s with a virtual explosion of research focused on nicotine psychopharmacology and potential addictive effects (US DHHS 1979, 1988; National Institute on Drug Abuse 1984, 1987 (Henningfield and Goldberg 1983).

The expansion of nicotine-related research was driven largely by the growing recognition of the emerging tobacco epidemic. It was facilitated by advances in research methodology and technology that enabled scientists to examine the cellular and even molecular basis of nicotine action. Such developments contributed to a rapidly increasing understanding of the effects of nicotine on brain structure and
function, as well as to identifying and characterizing the effects of the multitude of subtypes of nicotinic receptors, laying the foundation for advances that might lead to therapeutic uses of nicotine and related molecules beyond their use for the treatment of tobacco dependence and withdrawal (Henningfield et al. 2006; Buchhalter et al. 2008).

An update on the remarkable progress in research related to nicotine psychopharmacology was presented in a special issue of the journal *Psychopharmacology* in 2006. The volume clearly struck a chord with many in basic science, public health, and policy, who learned that this area of pharmacological science was not only strong, but also highly relevant to potential public health policy and regulatory efforts aimed at controlling tobacco use, addiction, and resultant deadly disease. This was anticipated in the mid 1990s when the Commissioner of the United States Food and Drug Administration (FDA) proposed that the agency regulate tobacco products (Kessler 2001; Kessler et al. 1997; FDA 1995, 1996). The Commissioner’s testimony and recommendations were based in part on basic science findings, including the actions of nicotine on nicotinic receptors in the brain, advances in understanding the mechanisms of action of nicotine through neuroimaging, and discriminative and reinforcing actions of nicotine. Subsequently, the World Health Organization came to rely in part on psychopharmacological research findings as part of the science base for development and implementation of its international treaty, proposed in the late 1990s, which entered into force in 2005 (WHO 2005). The Treaty’s articles that include attention to nicotine dosing capacity and effect, in particular, will continue to rely on psychopharmacology research as they are implemented.

The European Commission has also taken a strong science-based approach to tobacco disease control and product regulation and has made tobacco control a priority since the mid 1980s. For examples, reports by the Analysis of Science Policy in Europe for Control of Tobacco (ASPECT) Consortium financed by and prepared for the use of the European Commission, Directorate-General for Health and Consumer Protection emphasize the need for a strong science base for tobacco-control policy and interventions (European Commission 2004, 2007). There are many other national and regional efforts as well, but these illustrate the global public health and regulatory importance of nicotine and tobacco science that has included psychopharmacological research.

The fact that psychopharmacological research on nicotine and related compounds was progressing at a rapid pace, with broad and substantial interest, indicated that an update, in the form of a systematically planned and edited special volume, could serve the field and facilitate scientific progress. It was challenging to represent the many promising areas of research, from molecular to clinical to epidemiological, within a single volume. We asked leading researchers to write relatively focused reviews on their areas of recent interest. Each article was reviewed by experts, including other authors whose articles are published in this volume, producing what we believe is a reference that will be useful to researchers, students, health professionals, and to the growing number of people involved in efforts to regulate tobacco product contents and designs nationally and internationally. This work was intended
as a contribution to the reversal of the current tobacco epidemic and thereby to preventing many of the approximately one-half billion tobacco attributable deaths predicted in the first half of the twentieth century (Koop 2004; Doll 1994).

Bethesda, MD, USA
Los Angeles, CA, USA
Izmir, Turkey

References

Food and Drug Administration (1995) Regulations restricting the sale and distribution of cigarettes and smokeless tobacco products to protect children and adolescents; proposed rule analysis regarding FDA's jurisdiction over nicotine-containing cigarettes and smokeless tobacco products; notice. Fed Reg 60:41314–41792

Food and Drug Administration (1996). Regulations restricting the sale and distribution of cigarettes and smokeless tobacco to protect children and adolescents; final rule. Fed Reg 61:44396–45318

Johnston LM, Glass MB (1941) Tobacco smoking and nicotine. Lancet 1:867

Langley JN (1905) On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol 33:374–413
National Institute on Drug Abuse (1987) The second triennial report to Congress From the Secretary, Department of Health and Human Services. National Institute on Drug Abuse, Rockville, MD
Contents

Part I Nicotine and Tobacco Consumption: Measurement and Trends

Global Patterns of Nicotine and Tobacco Consumption 3
S. Katharine Hammond

Nicotine Chemistry, Metabolism, Kinetics and Biomarkers 29
Neal L. Benowitz, Janne Hukkanen, and Peyton Jacob III

Nicotine Content and Delivery Across Tobacco Products 61
Mirjana V. Djordjevic and Kelly A. Doran

Part II Nicotine Pharmacology and Mechanisms of Action

The Road to Discovery of Neuronal Nicotinic Cholinergic Receptor Subtypes ... 85
Allan C. Collins, Outi Salminen, Michael J. Marks, Paul Whiteaker,
and Sharon R. Grady

Magnetic Resonance Imaging Studies of Cigarette Smoking 113
Allen Azizian, John Monterosso, Joseph O’Neill, and Edythe D. London

In vivo Brain Imaging of Human Exposure to Nicotine and Tobacco 145
Anil Sharma and Arthur L. Brody

Molecular and Cellular Mechanisms of Action of Nicotine in the CNS 173
Jacques Barik and Susan Wonnacott

The Neuronal Pathways Mediating the Behavioral and Addictive Properties of Nicotine .. 209
David J.K. Balfour

Molecular Genetics of Nicotine Metabolism 235
Jill C. Mwenifumbo and Rachel F. Tyndale
Sex Differences in Nicotine Action .. 261
Sakire Pogun and Gorkem Yararbas

Part III Nicotine Psychopharmacology

Recognising Nicotine: The Neurobiological Basis of Nicotine Discrimination ... 295
Janice W. Smith and Ian P. Stolerman

Effects of Nicotine in Experimental Animals and Humans: An Update on Addictive Properties .. 335
Bernard Le Foll and Steven R. Goldberg

Discriminative Stimulus Effects of Nicotine in Humans 369
Kenneth A. Perkins

Rodent Models of Nicotine Withdrawal Syndrome 401
David H. Malin and Pilar Goyarzu

Part IV Nicotine and Tobacco Product Regulation

Approaches, Challenges, and Experience in Assessing Free Nicotine . 437
David L. Ashley, James F. Pankow, Ameer D. Tavakoli, and Clifford H. Watson

Tobacco Industry Manipulation of Nicotine Dosing 457
Geoffrey Ferris Wayne and Carrie M. Carpenter

Pharmacotherapy for Tobacco Dependence 487
Reginald V. Fant, August R. Buchhalter, Albert C. Buchman, and Jack E. Henningfield

Nicotine Psychopharmacology: Policy and Regulatory 511
Jack E. Henningfield and Mitch Zeller

Index ... 535
Contributors

David L. Ashley Emergency Response and Air Toxicants Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Mailstop 47, Atlanta, GA 30341, USA, dla1@cdc.gov

Allen Azizian Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA

David J.K. Balfour Section of Psychiatry of Behavioral Neuroscience, Division of Pathology & Neuroscience, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, Scotland, UK, d.j.k.balfour@dundee.ac.uk

Jacques Barik CNRS UMR7148, Génétique Moléculaire, Neurophysiologie & Comportement Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France, jacquesbarik@yahoo.fr

Neal L. Benowitz Division of Clinical Pharmacology and Experimental Therapeutics, University of California, P. O. Box 1220, San Francisco, CA 94143-1220, USA, nbenowitz@medsfgh.ucsf.edu

Arthur L. Brody Department of Psychiatry & Biobehavioral Sciences, UCLA School of Medicine; Departments of Psychiatry and Research, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90095, USA, abrody@ucla.edu

August R. Buchhalter Pinney Associates, 3 Bethesda Metro Center, Suite 1400, Bethesda, MD 20814, USA

Albert C. Buchman Pinney Associates, 3 Bethesda Metro Center, Suite 1400, Bethesda, MD 20814, USA

Carrie M. Carpenter Harvard School of Public Health, Division of Public Health Practice, Landmark Building 677 Huntington Avenue, Boston, MA 02115, USA, ccarpent@hsph.harvard.edu
Allan C. Collins Institute for Behavioral Genetics University of Colorado, Boulder, CO 80309, USA, al.collins@colorado.edu

Mirjana V. Djordjevic Tobacco Control Research Branch, Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, 6130 Executive Blvd, EPN 4048, MSC 7337, Bethesda, MD 20892-7337, USA, djordjev@mail.nih.gov

Kelly A. Doran DB Consulting Group Inc, Tobacco Control Research Branch, Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, 6130 Executive Blvd, EPN 4039, MSC 7337, Bethesda, MD 20892-7337, USA, dorank@mail.nih.gov

Reginald V. Fant Pinney Associates, 3 Bethesda Metro Center, Suite 1400, Bethesda, MD 20814, USA, rfant@pinneyassociates.com

Steven R. Goldberg Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA, sgoldber@intra.nida.nih.gov

Pilar Goyarzu University of Houston-Clear Lake, Houston, TX 77058, USA

Sharon R. Grady Institute for Behavioral Genetics University of Colorado, Boulder, CO 80309, USA

S. Katherine Hammond Professor of Environmental Health Sciences and Division Chair, 50 University, Hall, University of California, Berkeley, School of Public Health, Berkeley, CA 94720-7360, USA hammondk@berkeley.edu

Jack E. Henningfield Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Johns Hopkins University, USA and Pinney Associates, 3 Bethesda Metro Center, Suite 1400, Bethesda, MD 20814, USA

Janne Hukkanen Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco General Hospital Medical Center, San Francisco, CA, USA and The Departments of Medicine and Biopharmaceutical Sciences, University of California, San Francisco, CA, USA

Peyton Jacob III Division of Clinical Pharmacology and Experimental Therapeutics, Medical Service, San Francisco General Hospital Medical Center, San Francisco, CA, USA and The Departments of Medicine and Biopharmaceutical Sciences, University of California, San Francisco, CA, USA
Contributors

Bernard Le Foll Translational Addiction Research Laboratory, CAMH, Departments of Psychiatry, Pharmacology and Family and Community Medicine; University of Toronto, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, Canada M5S 2S1, bernard_lefoll@camh.net

Edythe D. London Department of Psychiatry and Biobehavioral Sciences, Department of Molecular and Medical Pharmacology, and Brain Research Institute, University of California, Los Angeles, CA, USA, elondon@mednet.ucla.edu

David H. Malin University of Houston-Clear Lake, Houston, TX 77058, USA, malin@uhcl.edu

Michael J. Marks Institute for Behavioral Genetics University of Colorado, Boulder, CO 80309, USA

John Monterosso Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA

Jill C. Mwenifumbo Centre for Addiction & Mental Health and Department of Pharmacology, University of Toronto, Toronto, ON, Canada

Joseph O’Neill Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA

James F. Pankow Department of Environmental and Biomolecular Systems OGI School of Science and Engineering, Oregon Health and Science University Portland, OR 97291, USA, pankowj@ohsu.edu

Kenneth A. Perkins Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3811 O’Hara Street, Pittsburgh, PA 15213, USA, perkinska@upmc.edu

Sakire Pogun Ege University Center for Brain Research, Bornova, 35100 Izmir, Turkey, sakire.pogun@ege.edu.tr

Outi Salminen Institute for Behavioral Genetics University of Colorado, Boulder, CO 80309, USA

and

University of Helsinki, Helsinki, Finland

Anil Sharma UCLA Department of Psychiatry & Biobehavioral Sciences, VA Greater Los Angeles Health Care System, 11301 Wilshire Blvd. Bldg 256 Suite 221 Los Angeles, CA 90073, USA, asharma@mednet.ucla.edu

Janice W. Smith Eli Lilly & Co. Ltd, Lilly Research Centre, Sunninghill Road, Windlesham, Surrey GU20 6PH, UK, Smith_Janice_W@lilly.com

Ian P. Stolerman Section of Behavioural Pharmacology, Institute of Psychiatry P049, King’s College London, De Crespigny Park, London SE5 8AF, UK, I.Stolerman@iop.kcl.ac.uk
Ameer D. Tavakoli Emergency Response and Air Toxicants Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop 47, Atlanta, GA 30341, USA, bux7@cdc.gov

Rachel F. Tyndale Rm 4326 Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, ON, Canada M5S 1A8, r.tyndale@utoronto.ca

Clifford H. Watson Emergency Response and Air Toxicants Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway Mailstop 47, Atlanta, GA 30341, USA, cow1@cdc.gov

Geoffrey Ferris Wayne Harvard School of Public Health, Division of Public Health Practice Landmark Building, 677 Huntington Avenue, Boston, MA 02115, USA, ferriswayne@gmail.com

Paul Whiteaker Institute for Behavioral Genetics University of Colorado, Boulder, CO 80309, USA

Susan Wonnacott Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY UK, s.wonnacott@bath.ac.uk

Gorkem Yararbas Center for Drug R&D and Pharmacokinetic Applications, Ege University, Bornova, Izmir, 35100 Turkey

Mitch Zeller Pinney Associates, 3 Bethesda Metro Center, Suite 1400 Bethesda, MD 20814, USA, jhenning@pinneyassociates.com