Advances in Artificial Life

5th European Conference, ECAL’99
Lausanne, Switzerland, September 13-17, 1999
Proceedings
No matter what your perspective is, what your goals are, or how experienced you are, Artificial Life research is always a learning experience. The variety of phenomena that the people who gathered in Lausanne reported and discussed for the fifth time since 1991 at the European Conference on Artificial Life (ECAL) has not been programmed, crafted, or assembled by analytic design. It has evolved, emerged, or appeared spontaneously from a process of artificial evolution, self-organisation, or development.

Artificial Life is a field where biological and artificial sciences meet and blend together, where the dynamics of biological life are reproduced in the memory of computers, where machines evolve, behave, and communicate like living organisms, where complex life-like entities are synthesised from electronic chromosomes and artificial chemistries. The impact of Artificial Life in science, philosophy, and technology is tremendous. Over the years the synthetic approach has established itself as a powerful method for investigating several complex phenomena of life. From a philosophical standpoint, the notion of life and of intelligence is continuously reformulated in relation to the dynamics of the system under observation and to the embedding environment, no longer a privilege of carbon-based entities with brains and eyes. At the same time, the possibility of engineering machines and software with life-like properties such as evolvability, self-repair, and self-maintenance is gradually becoming reality, bringing new perspectives in engineering and applications.

All these aspects, and many more, are reflected in the 90 papers presented at ECAL'99 from 13 to 17 September 1999 and collected in this volume. Each paper has been carefully reviewed by three members of the scientific committee (see list following the Preface) and selected from among 150 submissions. Of the selected and revised papers, 50 have been accepted as long oral contributions and the remaining 40 as short poster contributions. In both cases, the overriding selection criteria have been scientific and methodological soundness, novelty, and potential for future developments. In addition to the contributed papers, this volume includes the abstracts of four keynote lectures (H. Meinhardt, W. D. Hamilton, L. Steels, and T. Lenton) and two invited talks (D. Mange and D. Thalmann). At the end of each abstract, the reader will find a list of the most relevant references for these talks.

In addition to single-track presentations, demonstrations, and satellite workshops, the first day of the conference was dedicated to a series of tutorials covering genotype-phenotype mappings, collective intelligence, cellular automata and complex systems, synthetic actors, evolutionary robotics, and artificial chemistry.

Contributed and invited papers have been classified according to the following broad categories.
Epistemology is concerned with the philosophical aspects of Artificial Life. The two selected papers address two key concepts in Artificial Life: what an emergent phenomenon could be and when an entity may be defined as alive.

Evolutionary Dynamics (17 papers) addresses a number of fundamental issues in natural and artificial evolution. These include the interactions between evolution and other forms of ontogenetic dynamics, the role and effect of mutations, development of synthetic organisms, and measures of diversity and complexity in evolving systems.

Evolutionary Cybernetics (12 papers) is artificial evolution of mechanisms and structures that support behavior of biological and artificial organisms with a sensory motor system. The papers included in this section employ this methodology for both understanding the development and functioning of biological brains and for synthesising control systems of autonomous robots and of other artificial creatures.

Bio-Inspired Robotics and Autonomous Agents (15 papers) is a collection of contributions describing recent efforts in building physical and virtual agents with life-like properties, such as bio-inspired control, adaptation, human and animal morphologies, and behavioural autonomy. Some of these papers go as far as addressing motivation, emotions, and economic behaviour.

Self-Replication, Self-Maintenance, and Gene Expression (16 papers) includes papers that investigate some fundamental properties of micro-entities such as RNA, DNA, cells, and cellular aggregates. These micro-entities are capable of self-replication, self-maintenance, evolution, and development into full organisms from a set of genetic instructions. While some of the authors attempt to understand these principles with mathematical models and computer simulations, others incorporate them into a new generation of bio-inspired electronic circuits capable of complex behaviours.

Societies and Collective Behaviours (17 papers) display complex dynamics that cannot be understood by looking at single individuals in isolation. Sex, cooperation, selfishness, teaching, cultural transmission, distributed problem solving, or simple interference are some of the phenomena that one observes in assemblies of natural and artificial organisms. The papers in this section attempt to understand under which conditions these phenomena arise, when they develop, and how one could exploit them to create societies of artificial agents and robots capable of performing complex tasks.

Communication and Language (13 papers) goes one step further and investigates the emergence and role of communication in societies of organisms and intelligent machines. In most cases communication is considered a dynamic phenomenon arising in populations of organisms that evolve, learn, and dynamically form temporal aggregations. Within this conceptual framework, some papers address the origin of language in its many manifestations, ranging from speech to lexicon and syntax.

ECAL'99 was selected as the 1999 International EPFL-Latsis Foundation Conference. Generous sponsorship by the Latsis Foundation allowed us to invite high-quality keynote lecturers, offer several student fellowships, and make
sure that the necessary resources were available for a successful organisation. Additional sponsors are listed on the next page.

The organisers thank very much Monique Dubois and Joseba Urtzelai for their assistance. Monique ensured a smooth and professional organisation from day 1, taking care of every single detail with precision and patience, while Joseba managed all bits and tricks of electronic submissions and e-mails. Marie-Jo Pel-

Lausanne, June 1999

Dario Floreano
Jean-Daniel Nicoud
Francesco Mondada
ECAL’99 has been organised by LAMI-Mantra at EPFL in Lausanne.

Executive Committee

Organisation: Dario Floreano, Jean-Daniel Nicoud, Francesco Mondada
Secretariat: Monique Dubois, Joseba Urzelai

Advisory and Scientific Committee

C. Adami (USA) P. Husbands (UK) S. Nolfi (I)
A. Babloyantz (B) A. J. Ijspeert (CH) D. Parisi (I)
W. Banzhaf (D) T. Ikegami (JP) R. Pfeifer (CH)
M. Bedau (USA) K. Kaneko (JP) T. Ray (USA)
H. Bersini (B) L. Keller (CH) E. Sanchez (CH)
A. Billard (CH) D. Keymeulen (JP) C. Sander (UK)
E. Bonabeau (USA) S. Kirby (UK) P. Schuster (A)
P. Bourgine (F) H. Kitano (JP) K. Shimohara (JP)
R. Brooks (USA) Y. Kuniyoshi (JP) M. Sipper (CH)
H. Bülthoff (D) C. Langton (USA) T. Smithers (E)
R. Calabretta (I) K. Lindgren (SE) R. Sole (E)
A. Cangelosi (UK) P. Luisi (CH) L. Steels (F)
P. Chacon (E) H. Lund (DK) J. Tani (JP)
D. Cliff (UK) H. Mallot (D) C. Taylor (USA)
J-L. Deneubourg (B) D. Mange (CH) D. Thalmann (CH)
M. Dorigo (B) P. Marrow (UK) A. Thompson (UK)
R. Douglas (CH) J. McCaskill (D) P. Todd (D)
C. Emmeche (DK) B. McMullin (IE) M. Tomassini (CH)
B. Faltings (CH) J-A. Meyer (F) J. Urzelai (CH)
T. Fukuda (JP) O. Michel (CH) G. P. Wagner (USA)
T. Gomi (CA) O. Miglino (I) M. Wheeler (UK)
S. Grand (UK) F. Moran (E) T. Ziemke (SE)
I. Harvey (UK) A. Moreno (E) S. Zrehen (USA)
T. Higuchi (JP) G. Mulhauser (UK)

Sponsoring Institutions

The Latsis Foundation, Geneva, has been the main sponsor.
The other sponsors were Swissair, K-Team S.A., Cyberbotics Ltd., LEGO laboratory of Aarhus University (DK), and Cyberlife Technology Ltd.
Table of Contents

Keynote Lectures

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Fertilized Eggs to Complex Organisms: Models of Biological Pattern Formation</td>
<td>3</td>
</tr>
<tr>
<td>Meinhardt H.</td>
<td></td>
</tr>
<tr>
<td>Fables of Cyberspace: Tapeworms, Horses, and Mountains</td>
<td>5</td>
</tr>
<tr>
<td>Hamilton W.D.</td>
<td></td>
</tr>
<tr>
<td>Cognitive Teleportation and Situated Embodiment</td>
<td>7</td>
</tr>
<tr>
<td>Steels L.</td>
<td></td>
</tr>
<tr>
<td>Testing Gaia Theory with Artificial Life</td>
<td>9</td>
</tr>
<tr>
<td>Lenton T.</td>
<td></td>
</tr>
</tbody>
</table>

Epistemology

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing for Emergence in Artificial Life</td>
<td>13</td>
</tr>
<tr>
<td>Ronald E.M.A., Sipper M., Capcarrère M.S.</td>
<td></td>
</tr>
<tr>
<td>Are Romance Novels Really Alive? A Discussion of the Supple Adaptation View of Life</td>
<td>21</td>
</tr>
<tr>
<td>Domjan P.</td>
<td></td>
</tr>
</tbody>
</table>

Evolutionary Dynamics

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Symbiosis Can Guide Evolution</td>
<td>29</td>
</tr>
<tr>
<td>Watson R.A., Pollack J.B.</td>
<td></td>
</tr>
<tr>
<td>Adaptability of Darwinian and Lamarckian Populations Toward an Unknown New World</td>
<td>39</td>
</tr>
<tr>
<td>Yamamoto Y., Sasaki T., Tokoro M.</td>
<td></td>
</tr>
<tr>
<td>Requirements for Immortal ALife to Exterminate Mortal ALife in One Finite, Heterogeneous Ecosystem</td>
<td>49</td>
</tr>
<tr>
<td>Oohashi T., Maekawa T., Ueno O., Nishida E., Kawai N.</td>
<td></td>
</tr>
<tr>
<td>Error Thresholds and Their Relation to Optimal Mutation Rates</td>
<td>54</td>
</tr>
<tr>
<td>Ochoa G., Harvey I., Buxton H.</td>
<td></td>
</tr>
<tr>
<td>Are Artificial Mutation Biases Unnatural?</td>
<td>64</td>
</tr>
<tr>
<td>Bullock S.</td>
<td></td>
</tr>
<tr>
<td>Evolving Mutation Rates for the Self-Optimisation of Genetic Algorithms</td>
<td>74</td>
</tr>
<tr>
<td>Anastasoff S.J.</td>
<td></td>
</tr>
</tbody>
</table>
Replicating Experiments in “Detour Behavior” with Artificially Evolved Robots: An A-Life Approach to Comparative Psychology 205
 Walker R., Miglino O.

Studying Animals through Artificial Evolution: The Cricket Case 215
 Kortmann R., Hallam J.

Evolving Behavioural Choice: An Investigation of Herrnstein’s Matching Law ... 225
 Seth A.K.

Modeling of an Early Evolutionary Stage of the Cnidarian Nervous System and Behavior .. 236
 Albert J.

Spontaneous Evolution of Command Neurons, Place Cells and Memory Mechanisms in Autonomous Agents 246
 Aharonov-Barki R., Beker T., Ruppin E.

Modularity in Evolved Artificial Neural Networks 256
 Rotaru-Varga A.

Framsticks: Towards a Simulation of a Nature-Like World, Creatures and Evolution ... 261
 Komosiński M., Ulatowski S.

Evolving Visual Feature Detectors ... 266
 Belpaeme T.

Evolutionary Design of Mobile Robot Behaviors for Action-Based Environment Modeling .. 271
 Yamada S.

Bio-inspired Robotics and Autonomous Agents

On the Dynamics of Robot Exploration Learning 279
 Tani J., Sugita Y.

Artificial Autonomy in the Natural World: Building a Robot Predator 289
 Kelly I., Holland O., Scull M., McFarland D.

Behavior Adaptation on Behavior-Based Controller for Brachiation Robot. 294
 Hasegawa Y., Ito Y., Fukuda T.

Wet Artificial Brains: Towards the Chemical Control of Robot Motion by Reaction-Diffusion and Excitable Media 304
 Adamatzky A., Holland O., Rambidi N., Winfield A.

A Neuronal Structure for Learning by Imitation 314
 Moga S., Gaussier P.
A Neural Model for the Visual Navigation and Planning of a Mobile Robot .. 319
 Quoy M., Gaussier P., Leprêtre S., Revel A.

Progressive Construction of Compound Behavior Controllers for Autonomous Robots Using Temporal Information 324
 Becerra J.A., Santos J., Duro R.J.

A Visualization Tool for the Mini-Robot Khepera: Behavior Analysis and Optimization ... 329
 Löffler A., Klahold J., Hußmann M., Rückert U.

Towards UAV Nap-of-the-Earth Flight Using Optical Flow 334
 Netter T., Franceschini N.

On Bots and Bacteria: Ontology Independent Embodiment 339
 Quick T., Dautenhahn K., Nehaniv C.L., Roberts G.

Populating the Virtual Worlds with Interactive Perceptive Virtual Actors (invited talk) ... 344
 Thalmann D.

Level of Autonomy for Virtual Human Agents 345
 Raupp Musse S., Kallmann M., Thalmann, D.

Emotional Disorders in Autonomous Agents? 350
 Hyvärinen A., Honkela T.

Integrating Unsupervised Learning, Motivation and Action Selection in an A-Life Agent .. 355
 Witkowski M.

Can Computers Have Sentiments? The Case of Risk Aversion and Utility for Wealth .. 365
 Szpiro G.G.

Self-Replication, Self-Maintenance, and Gene Expression

Towards Robust Bio-inspired Circuits: The Embryonics Approach (invited talk) ... 377
 Mange D.

Designing a Simulation Model of a Self-Maintaining Cellular System 379
 Ruiz-Mirazo K., Moreno A., Morán F., Peretó J., Merelo J.J.

Design Patterns for an Object-Oriented Computational Chemistry 389
 Bersini H.

Model of Self-Replicating Cell Capable of Self-Maintenance 399
 Ono N., Ikegami T.
Evolution at the Origins of Life: Modelling Simple Persistent Replication Objects ... 407
Sharpe O.

A Simulation of Life Using a Dynamic Core Memory Partitioned by Membrane Data ... 412
Suzuki H.

Molecular Evolution in Time-Dependent Environments 417
Wilke C.O., Ronnewinkel C., Martinetz T.

Evolution to Complexity: Replication, Elongation and Assembly in an RNA World ... 422
Yamamoto T., Hogeweg P.

Evolution of Multispecificity in an Immune Network 427
Harada K., Ikegami T.

Laziness + Sensitivity + Mobility = Structure: Emergence of Patterns in Lattice Swarms ... 432
Adamatzky A., Holland O., Melhuish C.

Self-Repairing Multicellular Hardware: A Reliability Analysis 442
Ortega C., Tyrrell A.

Arithmetic Operations on Self-Replicating Cellular Automata 447
Petraglio E., Henry J.-M., Tempesti G.

Dynamics of Gene Expression in an Artificial Genome - Implications for Biological and Artificial Ontogeny 457
Reil T.

Parameter Optimization in Hierarchical Structures 467
Hamahashi S., Kitano H.

A Model of Axis Determination for the Drosophila Wing Disc 472
Kyoda K., Kitano H.

Identifying Gene Regulatory Networks from Time Series Expression Data by in silico Sampling and Screening 477
Morohashi M., Kitano H.

Societies and Collective Behaviour

Simulating the Evolution of Artifacts .. 489
Ugolini M., Parisi D.

The Evolution of Non-reciprocal Altruism 499
Brinkers M., den Dulk P.
A Little More than Kind and Less than Kin: The Unwarranted Use of Kin Selection in Spatial Models of Communication ... 504
 Di Paolo E.A.

An Evolutionary Simulation Model of Social Learning about Food by Norway Rats .. 514
 Noble J., Tuci E., Todd P.M.

Effects of Cohesiveness on Inter-Sexual Dominance Relationships and Spatial Structure among Group-Living Virtual Entities 524
 Hemelrijk C.K.

Simplicity Rules the Roost: Exploring Birdbrain Parental Investment Heuristics ... 535
 Bullock S., Nerissa Davis J., Todd P.M.

Imitation and Cooperation in Coupled Dynamical Recognizers 545
 Ikegami T., Taiji M.

Emergence of Adaptive Society with Competitive Selfish Agents 555
 Ishida T., Yokoi H., Kakazu Y.

Dynamical Systems Game .. 560
 Akiyama E., Kaneko K.

High Speed Hardware Computation of Co-evolution Models 566
 Yamaguchi Y., Maruyama T., Hoshino T.

A Probabilistic Model for Understanding and Comparing Collective Aggregation Mechanisms ... 575
 Martinoli A., Ijspeert, A.J., Gambardella L.M.

Exploiting Domain Physics: Using Stigmergy to Control Cluster Building with Real Robots ... 585
 Melhuish C.

Adaptive Exploration of a Dynamic Environment by a Group of Communicating Robots ... 596
 Billard A., Ijspeert A.J., Martinoli A.

Task Fulfilment and Temporal Patterns of Activity in Artificial Ant Colonies ... 606
 Delgado J., Solé R.V.

Formalizing the Ant Algorithms in Terms of Reinforcement Learning 616
 Nowe A., Verbeeck K.

Using Competing Ant Colonies to Solve k-way Partitioning Problems with Foraging and Raiding Strategies 621
 Langham A.E., Grant P.W.
On Improving Clustering in Numerical Databases with Artificial Ants . . . 626
Monmarché N., Slimane M., Venturini G.

Communication and Language

Ants War with Evolutive Pheromone Style Communication 639
Kawamura H., Yamamoto M., Suzuki K., Ohuchi A.

Noble J.

Modeling the Evolution of Communication: From Stimulus Associations to Grounded Symbolic Associations 654
Cangelosi A.

Emergence of Speech Sounds in Changing Populations 664
de Boer B., Vogt P.

SPECIES: An Evolutionary Model for the Emergence of Phonetic Structures in an Artificial Society of Speech Agents 674
Berrah A.-R., Laboissière, R.

Collective Learning and Semiotic Dynamics 679
Steels L., Kaplan F.

Analyzing the Evolution of Communication from a Dynamical System's Perspective ... 689
de Jong E.D.

Syntax out of Learning: The Cultural Evolution of Structured Communication in a Population of Induction Algorithms 694
Kirby S.

Modelling the Evolution of Linguistic Diversity 704
Livingstone D., Fyfe C.

Compression and Adaptation ... 709
Teal T., Albro D., Stabler E., Taylor C.E.

Effective Lexicon Change in the Absence of Population Flux 720
Dircks C., Stoness S.C.

Self-Organization of a Lexicon in a Structured Society of Agents 725
Oudeyer P.-Y.

Modeling Categorization Dynamics through Conversation by Constructive Approach .. 730
Hashimoto T.
Author Index ... 735