Insecticides Design Using Advanced Technologies
Insecticides Design
Using
Advanced Technologies

With 62 Figures, 9 in Color, and 32 Tables

Springer
Preface

Insecticide development in recent years has been guided mostly by chemorational and biorational design based on understanding of the physiology and ecology of insects and crops. Among the recently developed groups of insecticides are the chitin synthesis inhibitors, benzoylphenyl urea’s and buprofezin; the juvenile hormone mimics, fenoxycarb and pyriproxyfen; the ecdysone agonists, e.g. tebufenozide and methoxyfenozide; and the new neurotoxicants, the neonicotinoids and the avermectins. In addition, compounds affecting specific sites in insects have been developed; such as pymetrozine acting on the sucking pump of aphids and whiteflies, diafenthion affecting insect respiration and azadirachtin the hormonal balance of insects.

A limitation in each new class of compounds is the evolution of resistance in populations of key pests, which leads to control failures. This phenomenon and the desire to produce more selective and biorational compounds serve as the driving forces for insecticide design that ultimately lead to the development of new compounds.

Among the highlights of this book are the use of nanotechnology to increase potency of available insecticides, use of genetic engineering techniques for controlling insect pests, development of novel insecticides that bind to unique biochemical receptors, and exploration of natural products as a source for environmentally acceptable insecticides. In addition, screening for safe and potent insecticides using insect genomics and cell lines for determining biological and biochemical modes of action are discussed in detail in this book.

The authors of the various chapters are considered world leaders having a wealth of experience in pesticide chemistry and in advanced technologies for designing highly selective insecticides for controlling insect pests.

This book is intended to serve as a text for researchers, university professors, graduate students, and chemical industry personnel involved in developing new groups of insecticides to suit our future requirements.

In the preparation of the manuscript, the editors and the authors are indebted to the reviewers of the various chapters for valuable suggestions and criticism: Shalom Applebaum (Israel), Jeff Bloomquist (USA), Kostas Bourtzis (Greece), Gerry Brooks (England), Nor Chejanovski (Israel), Daniel Daffonchio (Italy), Arnold De Loof (Belgium), C. L. Goodman (USA), Robert Hollingworth (USA), Dick Hyde (England), Shinzo Kagabu (Japan), Opender Koul (India), Peter Krell (Canada), Yoshiaki Nakagawa (Japan), Herbert Oberlander (USA), Arthur Retnakaran (Canada), L. Swevers (Greece), Michael Tracy (USA), and Phyllis Weintraub (Israel).
Contents

1 Nanosuspensions: Emerging Novel Agrochemical Formulations
 YOEL SASSON, GANIT LEVY-RUSO, OFER TOLEDANO AND ISAAC ISAAYA 1
 1 Introduction .. 1
 2 Solubility Enhancement Through Nanoization 3
 3 Stabilization of Nanosuspensions .. 7
 4 Preparation of Nanosuspensions .. 14
 4.1 Top-Down Methods .. 14
 4.1.1 Nanoparticles by Milling Technologies 14
 4.1.2 Nanoparticles via High-Pressure Homogenization 16
 4.1.3 Sonication .. 17
 4.2 Bottom-Up Methods .. 17
 4.2.1 Controlled Precipitation 17
 4.2.1.1 Reactive Precipitation 17
 4.2.1.2 Solvent Displacement Method 18
 4.2.2 Aerosol Procedures 23
 4.2.3 Microemulsion Template Methods 23
 4.2.4 Supercritical Fluid Methods 23
 5 Characterization of Nanoparticulate Systems 24
 5.1 Mean Particle Size and Particle-Size Distribution 25
 5.2 Surface Area .. 25
 5.3 Particle Charge (Zeta Potential) 25
 5.4 Contact Angle .. 26
 5.5 Morphology and Crystalline State 26
 5.6 Saturation Solubility and Dissolution Rate 26
 6 Nanoformulations of Crop-Protection Chemicals 26
 7 Nanoparticulate Formulations of Novaluron 28
 7.1 Novaluron: A Novel IGR 28
 7.2 Preparation of Nanosuspensions of Novaluron 29
 7.3 Comparative Efficacy of Nanosuspension Formulations of Novaluron ... 29
 8 Conclusions .. 32
 References .. 32

2 Pharmacokinetics: Computational Versus Experimental Approaches to Optimize Insecticidal Chemistry
 RICHARD GREENWOOD, DAVID W. SALT AND MARTYN G. FORD 41
 1 Introduction .. 41
 1.1 Drug Design by the Pharmaceutical Industry 42
5 Symbiosis and Microbiology

5.1 Symbiotic Control of Disease Transmission
5.2 Dental Caries
5.3 Pierce’s Disease
5.4 The Vector Insect
5.5 The Symbiont
5.6 Genetic Engineering of GWSS/Grapevine Bacterial Symbionts
5.7 Competitive Displacement
5.8 Quorum Sensing
5.9 Practical Consideration

6 Conclusions

References

5 Future Insecticides Targeting Genes Involved in the Regulation of Molting and Metamorphosis

SUBBA REDDY PALLI AND MICHEL CUSSON

1 Introduction

2 Hormonal Regulation of Molting and Metamorphosis

2.1 PTTH

2.1.1 Introduction
2.1.2 Biosynthesis
2.1.3 Mode of Action

2.2 Ecdysone

2.2.1 Introduction
2.2.2 Biosynthesis
2.2.3 Mode of Action

2.3 Juvenile Hormone

2.3.1 Introduction
2.3.2 Biosynthesis
2.3.3 Mode of Action

2.4 Ecdysis-Controlling Neuropeptides

2.4.1 Introduction
2.4.2 Biosynthesis
2.4.3 Mode of Action

2.5 Bursicon

2.5.1 Introduction
2.5.2 Biosynthesis
2.5.3 Mode of Action

3 Genes Involved in Molting and Metamorphosis as Target Sites

for the Design of Biorational Insecticides

3.1 Success Stories

3.1.1 Ecdysone Analogs
3.1.2 JH Analogs

3.2 Hormones, Receptors and Transcription Factors as Target Sites

3.3 Biosynthetic Enzymes as Target Sites
11 Essential Oils as Biorational Insecticides—Potency and Mode of Action
E. Shaaya and A. Rafaeli 249
 1 Introduction ... 249
 2 Essential Oils Activities on Insect Pests 250
 2.1 Plant Resistance 250
 2.2 Insecticidal Activity 250
 2.3 Repellency ... 251
 2.3.1 Anti-feedant 251
 3 Efficacy of Essential Oils as Fumigants for the Control
 of Stored-Product Insects 251
 4 Insecticidal Mode of Action of Essential Oil-Toxicity 253
 4.1 Introduction .. 253
 4.2 Neurotransmitters in Insects 255
 4.3 Inhibitory Activity of Essential Oils on
 Acetylcholinesterase (AchE) 256
 4.4 Inhibitory Activity of Essential Oils on Octopaminergic Sites ... 257
 5 Concluding Remarks 259
 References ... 260

12 Insect Cell Lines as Tools in Insecticide Mode of Action Research
Guy Smagghe 263
 1 Introduction ... 263
 2 Insect Cell Cultures 265
 3 Endocrine Strategies 267
 3.1 Screening for Ecdysteroid and Juvenile Hormone Activities 267
 3.2 Ecdysteroid ... 269
 3.3 Juvenile Hormones 279
 4 Insect-Specific Metabolic Pathways with Chitin and
 Cuticle Synthesis 280
 5 Other Insect Targets Related to the Insect Neurological/ Nerve,
 Energy Metabolism and Muscle System 287
 6 Insect Cell Lines as Proxies for Bacillus thuringiensis
 Insecticidal Proteins 288
 7 Suitability of Insect Cell Lines as Sentinels for Environmental
 Toxicity and Chemistry 290
 8 Elucidation of Insecticide Resistance Mechanisms Using
 Insect Cell Lines 291
 9 Conclusions ... 293
 References ... 294

Index ... 305
Contributors

AKHTAR, Y. (E-MAIL: YAKHTAR@INTERCHANGE.UBC.CA)
Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Suite 248, Vancouver, BC, Canada V6T 1Z4

ALLENZA, P. (E-MAIL: PAUL_ALLENZA@FMC.COM)
Agricultural Products Group, FMC Corporation, Route 1 and Plainsboro Rd., Princeton, NJ 08543, USA

ARIF, B. (E-MAIL: BARIF@NRCAN.GC.CA)
Laboratory for Molecular Virology, Great Lakes Forestry Centre, NRC, Canada

BOROVSKY, D. (E-MAIL: DOBO@IFAS.UFL.EDU)
Florida Medical Entomology Laboratory, University of Florida, 200 9th St. SE, Vero Beach, FL 32962, USA

CUSSON, M. (E-MAIL: MICHEL.CUSSON@NRCAN.GC.CA)
Laurentian Forestry Centre, Natural Resources Canada, PO Box 10380, Sainte-Foy, Quebec City, QC, G1 V 4C7, Canada

ELDRIDGE, R. (E-MAIL: RUSSELL_ELDREDGE@FMC.COM)
Agricultural Products Group, FMC Corporation, Route 1 and Plainsboro Rd., Princeton, NJ 08543, USA

ESCASA, S.
Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario P6A 2E5, Canada

FORD, M. (E-MAIL: MARTYN.FORD@PORT.AC.UK)
School of Biological Sciences, and Centre for Molecular Design, IBBS, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK

GREENWOOD, R. (E-MAIL: RICHARD.GREENWOOD@PORT.AC.UK)
School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK

HOROWITZ, A. R. (E-MAIL: HRAMI@VOLCANL.AGRIL.GOV.IL)
Department of Entomology, Agricultural Research Organization, Gilat Research Center, M. P. Negev 85280, Israel
ISHAAYA, I. (E-MAIL: VPISHA@VOLCANI.AGRI.GOV.IL)
Department of Entomology, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel

ISMAN, M. B. (E-MAIL: MURRAY.ISMAN@UBC.CA)
Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Suite 248, Vancouver, BC, Canada V6T 1Z4

JESCHKE, P. (E-MAIL: PETER.JESCHKE@BAYERCROPSCIENCE.COM)
Bayer CropScience AG, Alfred Nobel Str. 50, 40789 Monheim, Germany

LEVY-RUSO, G. (E-MAIL: GANIT@MAKHTESHIM.CO.IL)
Makhteshim Chemical Works Ltd., PO Box 60, Beer sheva 84100, Israel

LÜMMEN, P. (E-MAIL: PETER.LUEMMEN@BAYERCROPSCIENCE.COM)
Bayer CropScience AG, Alfred Nobel Str. 50, 40789 Monheim, Germany

MILLER, T. (E-MAIL: THOMAS.MILLER@UCR.EDU)
Department of Entomology, University of California, Riverside, CA 92521, USA

NAUEN, R. (E-MAIL: RALF.NAUEN@BAYERCROPSCIENCE.COM)
Bayer CropScience AG, Alfred Nobel Str. 50, 40789 Monheim, Germany

PALLI, S. R. (E-MAIL: RPALLI@UKY.EDU)
Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA

RAFAELI, A. (E-MAIL: VTADA@VOLCANI.AGRI.GOV.IL)
Department of Stored Product Pests, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel

SALT, D. W. (E-MAIL: DAVID.SALT@PORT.AC.UK)
Department of Mathematics and Centre for Molecular Design, IBBS, University of Portsmouth, UK

SASSON, Y. (E-MAIL: YSASSON@HUJI.AC.IL)
Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, 91904 Israel

SCHWARZ, R. (E-MAIL: RSCHWARZ@NRCAN.GC.CA)
Laboratory for molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5, Canada

SHAAYA, E. (E-MAIL: VTSHAAYA@VOLCANI.AGRI.GOV.IL)
Department of Stored Product Pests, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel

SMAGGHE, G. (E-MAIL: GUY.SMAGGHE@UGENT.BE)
Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

TOLEDANO, O. (E-MAIL: OFER.TOLEDANO@SOL-GEL.COM)
Makhteshim Chemical Works Ltd., PO Box 60, Beer sheva 84100, Israel