Preface

Beginning with prehistoric cave drawings, diagrams have been a common means of representing and communicating information throughout history. Humans are skilled at creating, understanding, and making inferences from diagrams. In recent years, with advances in graphic technologies, innovations such as animations and interactive visualizations have made diagrammatic representations even more important in scientific and technical discourse and in everyday life. There is increased interest in fields such as artificial intelligence, computer vision, and visual programming languages to endow computers with human-like diagrammatic reasoning capacities. These developments have triggered a new surge of interest in the study of diagrammatic notations, which is driven by several different scientific disciplines concerned with cognition, computation, and communication.

“Diagrams” is an international and interdisciplinary conference series on the theory and application of diagrams in all scientific fields of inquiry. It grew out of a series of workshops during the 1990s: Thinking with Diagrams (TWD), Theory of Visual Languages (TVL), and Reasoning with Diagrammatic Representations (DR). The conference series was successfully launched in Edinburgh in September 2000. It attracts researchers from a variety of academic disciplines who are studying the nature of diagrammatic representations, their use in human communication, and cognitive or computational mechanisms for processing diagrams. Thus, it reflects the realization that the study of diagrammatic representation and communication must be pursued as an interdisciplinary endeavor. “Diagrams 2002” was the second event in this series. It took place at Callaway Gardens, Georgia, USA, April 18-20, 2002.

The call for contributions to Diagrams 2002 attracted 77 submissions from disciplines such as architecture, artificial intelligence, cognitive science, computer science, education, human-computer interaction, logic, philosophy, and psychology. The conference program was determined by a distinguished Program Committee that brought both interdisciplinary expertise and international flavor to the endeavor. Each submission was thoroughly peer-reviewed by three members of the Program Committee or additional referees they nominated. This labor-intensive process was intended to equitably identify the highest quality scientific and technical contributions, effectively communicated, that provided the balanced multidisciplinary intellectual record of research appearing in these proceedings. The acceptance rate was about 30% with 21 full papers accepted for presentation at the conference. In addition, 19 submissions were accepted as posters.

Besides paper and poster presentations, Diagrams 2002 included two invited talks. One was by B. Chandrasekaran, a respected researcher in artificial intelligence who played a key role in the very first meeting on this topic (1992 AAAI Spring Symposium on Reasoning with Diagrammatic Representations) and the
subsequent development of this field. The second invited talk was presented by James A. Landay, an emerging researcher in human-computer interaction, who has studied how designers use sketches in the early stages of user interface design for the web and has leveraged his findings to build novel computational tools that support design by sketching.

We gratefully acknowledge financial support from the Office of Naval Research, the American Association for Artificial Intelligence, and the Cognitive Science Society. Their support enabled us to provide scholarships to all student first authors of papers and posters presented at the conference, and present a best paper award which was announced at the conference. The generosity of our sponsors is very much appreciated. In addition, the conference was held in cooperation with the Japanese Cognitive Science Society and the Japanese Society for Artificial Intelligence. We thank Hiroshi Motoda, Atsushi Shimoojima, and Masaki Suwa for their efforts in securing this cooperation.

We thank members of the program and organizing committees for making the meeting and this volume a success. We are grateful for the continued support of Springer-Verlag. The staff of Callaway Gardens provided a pleasant setting for our intellectual exchanges. Finally, the core of any such enterprise is the participants and contributors. Their effort and enthusiasm made this a worthwhile endeavor.

March 2002

Mary Hegarty
Bernd Meyer
N. Hari Narayanan
Organization

General Chair

N. Hari Narayanan Auburn University, USA

Program Chairs

Mary Hegarty University of California at Santa Barbara, USA
Bernd Meyer Monash University, Australia

Administration

Finance & Local
Organization Chair Roland Hübischer, Auburn University, USA
Publicity Chair Volker Haarslev, University of Hamburg, Germany

Sponsorship

Office of Naval Research
American Association for Artificial Intelligence
Cognitive Science Society

In Cooperation with

Japanese Cognitive Science Society
Japanese Society for Artificial Intelligence
Program Committee

Michael Anderson Fordham University, USA
Dave Barker-Plummer Stanford University, USA
Alan Blackwell Cambridge University, UK
Dorothea Blostein Queen’s University, Canada
Paolo Bottoni University of Rome, Italy
Jo Calder Edinburgh University, UK
B. Chandrasekaran Ohio State University, USA
Peter Cheng University of Nottingham, UK
Richard Cox Sussex University, UK
Max J. Egenhofer University of Maine, USA
Norman Foo University of Sydney, Australia
Ken Forbus Northwestern University, USA
George Furnas University of Michigan, USA
Meredith Gattis University of Sheffield, UK
Helen Gigley Office of Naval Research, USA
Mark Gross University of Washington, USA
Corin Gurr Edinburgh University, UK
Volker Haarslev University of Hamburg, Germany
Patrick Healey University of London, UK
Mary Hegarty University of California at Santa Barbara, USA
John Howse University of Brighton, UK
Roland Hübser Auburn University, USA
Maria Kozhevnikov Rutgers University, USA
Zenon Kulpa Institute of Fundamental Technological Research, Poland
Stefano Levialdi University of Rome, Italy
Robert Lindsay University of Michigan, USA
Ric Lowe Curtin University, Australia
Bernd Meyer Monash University, Australia
Richard E. Mayer University of California at Santa Barbara, USA
Mark Minas University of Erlangen, Germany
N. Hari Narayanan Auburn University, USA
Kim Marriott Monash University, Australia
Nancy Nersessian Georgia Institute of Technology, USA
Daniel L. Schwartz Stanford University, USA
Priti Shah University of Michigan, USA
Atsushi Shimojima Advanced Institute of Science and Technology, Japan
Sun-Joo Shin University of Notre Dame, USA
Masaki Suwa Chukyo University, Japan
Barbara Tversky Stanford University, USA
Yvonne Waern Linköping University, Sweden
Additional Referees

D. Jacobson
M. Jamnik
S. Kriz
Truong Lan Le
D. Waller
M. Wessel
Table of Contents

Invited Talk
What Does It Mean for a Computer to Do Diagrammatic Reasoning?
A Functional Characterization of Diagrammatic Reasoning
and Its Implications .. 1
B. Chandrasekaran

Understanding and Communicating with Diagrams
Movement Conceptualizations in Graphical Communication 3
Ichiro Umata, Yasuhiro Katagiri, Atsushi Shimojima
Toward a Model of Knowledge-Based Graph Comprehension 18
Eric G. Freedman, Priti Shah
Learning on Paper: Diagrams and Discovery in Game Playing 31
Susan L. Epstein, J.-Holger Keibel

Diagrams in Mathematics
Using Animation in Diagrammatic Theorem Proving 46
Daniel Winterstein, Alan Bundy, Corin Gurr, Mateja Jamnik
Generating Euler Diagrams .. 61
Jean Flower, John House
Corresponding Regions in Euler Diagrams 76
John Howse, Gemma Stapleton, Jean Flower, John Taylor

Computational Aspects of Diagrammatic Representation
and Reasoning
CDEG: Computerized Diagrammatic Euclidean Geometry 91
Nathaniel Miller
Compositional Semantics for Diagrams Using Constrained Objects ... 94
Bharat Jayaraman, Pallavi Tambay
Retrieving 2-D Line Drawings by Example 97
Patrick W. Yaner, Ashok K. Goel
A System That Supports Using Student-Drawn Diagrams
to Assess Comprehension of Mathematical Formulas 100
Steven Tanimoto, William Winn, David Akers
Table of Contents

An Environment for Conducting and Analysing Graphical Communication Experiments .. 103
Patrick G.T. Healey, Nik Swoboda, James King

Grammar-Based Layout for a Visual Programming Language Generation System ... 106
Ke-Bing Zhang, Kang Zhang, Mehmet A. Orgun

Heterogeneous Data Querying in a Diagrammatic Information System .. 109
Micahel Anderson, Brian Andersen

Visualization vs. Specification in Diagrammatic Notations: A Case Study with the UML 112
Zinovy Diskin

Logic and Diagrams

The Inferential-Expressive Trade-Off: A Case Study of Tabular Representations .. 116
Atsushi Shimojima

Modeling Heterogeneous Systems ... 131
Nik Swoboda, Gerard Allwein

On Diagram Tokens and Types .. 146
John Howse, Fernando Molina, Sun-Joo Shin, John Taylor

Diagrams in Human-Computer Interaction

Effects of Navigation and Position on Task When Presenting Diagrams to Blind People Using Sound 161
David J. Bennett

A Fuzzy Visual Query Language for a Domain-Specific Web Search Engine .. 176
Christian S. Collberg

Diagrammatic Integration of Abstract Operations into Software Work Contexts .. 191
Alan F. Blackwell, Hanna Wallach

Tracing the Processes of Diagrammatic Reasoning

Extracting Explicit and Implicit Information from Complex Visualizations ... 206
J. Gregory Trafton, Sandra Marshall, Fardlee Mintz, Susan B. Trickett

Visual Attention and Representation Switching During Java Program Debugging: A Study Using the Restricted Focus Viewer .. 221
Pablo Romero, Richard Cox, Benedict du Boulay, Rudi Lutz
Guiding Attention Produces Inferences in Diagram-Based Problem Solving ... 236
 Elizabeth R. Grant, Michael J. Spivey

Visualizing Information with Diagrams

ViCo: A Metric for the Complexity of Information Visualizations 249
 Johannes Gärtner, Silvia Miksch, Stefan Carl-McGrath

Opening the Information Bottleneck in Complex Scheduling Problems with a Novel Representation: STARK Diagrams 264
 Peter C-H. Cheng, Rossano Barone, Peter I. Cowling, Samad Ahmadi

Using Brightness and Saturation to Visualize Belief and Uncertainty 279
 Joseph J. Pfeiffer, Jr.

Diagrams in Software Engineering

Structure, Abstraction, and Direct Manipulation in Diagram Editors 290
 Oliver Köth, Mark Minas

On the Definition of Visual Languages and Their Editors 305
 Paolo Bottoni, Gennaro Costagliola

Describing the Syntax and Semantics of UML Statecharts in a Heterogeneous Modelling Environment 320
 Yan Jin, Robert Esser, Jörn W. Janneck

Cognitive Aspects of Diagrammatic Representation and Reasoning

The Learnability of Diagram Semantics 335
 Pourang Irani

Understanding Simultaneity and Causality in Static Diagrams versus Animation ... 338
 Sarah Kriz

External Representations Contribute to the Dynamic Construction of Ideas ... 341
 Masaki Suwa, Barbara Tversky

One Small Step for a Diagram, One Giant Leap for Meaning 344
 Robert R. Hoffman, John W. Coffey, Patrick J. Hayes, Albert J. Cañas,
 Kenneth M. Ford, Mary J. Carnot

Understanding Static and Dynamic Visualizations 347
 Sally Bogacz, J. Gregory Trafton
Table of Contents

Teaching Science Teachers Electricity Using AVOW Diagrams 350
 Peter C-H. Cheng, Nigel G. Pitt

Conceptual Diagrams: Representing Ideas in Design 353
 Fehmi Dogan, Nancy J. Nersessian

 Charlotte R. Peters, Patrick G.T. Healey

Invited Talk

Informal Tools for Designing Anywhere, Anytime, Anydevice
User Interfaces .. 359
 James A. Landay

Author Index .. 361