Advances in Biochemical Engineering/Biotechnology

Managing Editor: T. Scheper

Editorial Board:
W. Babel · H. W. Blanch · I. Endo · S.-O. Enfors
A. Fiechter · M. Hoare · B. Mattiasson · H. Sahm
K. Schügerl · G. Stephanopoulos · U. von Stockar
D. T. Tsao · J. Villadsen · C. Wandrey · J.-J. Zhong
Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3–5 years. It also discusses new discoveries and applications.

In general, special volumes are edited by well known guest editors. The managing editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.

In references Advances in Biochemical Engineering/Biotechnology is abbreviated as Adv Biochem Engin/Biotechnol as a journal.

Visit the ABE home page at http://link.springer.de/series/abe/
http://link.Springer-nv.com/series/abe/

ISSN 0724-6145
ISBN 3-540-43385-6
Springer-Verlag Berlin Heidelberg New York

Library of Congress Catalog Card Number 72-152360

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de
© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Fotosatz-Service Köhler GmbH, Würzburg
Cover: E. Kirchner, Heidelberg

Printed on acid-free paper 02/3020mh 5 4 3 2 1 0
Prof. Dr. B. Mattiasson
Department of Biotechnology
Chemical Center, Lund University
P.O. Box 124, 221 00 Lund, Sweden
E-mail: bo.mattiasson@biotek.lu.se

Prof. Dr. K. Schügerl
Institute of Technical Chemistry
University of Hannover
Callinstræde 3
30167 Hannover, Germany
E-mail: schuegerl@mbox.iftc.uni-hannover.de

Prof. Dr. U. von Stockar
Laboratoire de Génie Chimique et Biologique (LGCB)
Département de Chimie
Swiss Federal Institute of Technology Lausanne
1015 Lausanne, Switzerland
E-mail: urs.stockar@epfl.ch

Prof. Dr. J. Villadsen
Center for Process of Biotechnology
Technical University of Denmark
Building 223
2800 Lyngby, Denmark
E-mail: john.villadsen@biocentrum.dtu.dk

Prof. Dr. J.-J. Zhong
State Key Laboratory of Bioreactor Engineering
East China University of Science and Technology
130 Meilong Road
Shanghai 200237, China
E-mail: jjzhong@ecust.edu.cn

Prof. Dr. H. Sahm
Institute of Biotechnology
Forschungszentrum Jülich GmbH
52425 Jülich, Germany
E-mail: h.sahm@fz-juelich.de

Prof. Dr. G. Stephanopoulos
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139-4307, USA
E-mail: gregstep@mit.edu

Prof. Dr. G. T. Tsao
Director
Lab. of Renewable Resources Eng.
A.A. Potter Eng. Center
Purdue University
West Lafayette, IN 47907, USA
E-mail: tsao@ecn.purdue.edu

Prof. Dr. C. Wandrey
Institute of Biotechnology
Forschungszentrum Jülich GmbH
52425 Jülich, Germany
E-mail: c.wandrey@fz-juelich.de
For all customers with a standing order for Advances in Biochemical Engineering/Biotechnology we offer the electronic form via LINK free of charge. Please contact your librarian who can receive a password for free access to the full articles. By registration at:

http://www.springer.de/series/abe/reg_form.htm

If you do not have a standard order you can nevertheless browse through the table of contents of the volumes and the abstracts of each article at:

http://link.springer.de/series/abe/
http://link.springer_ny.com/series/abe/

There you will find also information about the

- Editorial Board
- Aims and Scope
- Instructions for Author
Attention all Users of the Springer Handbook of Enzymes

Information on this handbook can be found on the internet at http://www.springer.de/enzymes/

A complete list of all enzymes entries either as an alphabetical Name Index or as the EC-Number Index is available at the above mentioned URL. You can download and print them free of charge.

A complete list of all synonyms (more than 25,000 entries) used for the enzymes is available in print form, ISBN 3-540-41830-X.

Save 15%

We recommend a standing order for the series to ensure you automatically receive all volumes and all supplements and save 15% on the list price.
Preface

The environmental clean up industry has been estimated as having an annual turnover of $50 billion globally. With new regulations being written on additional chemicals that are just, now, becoming understood from a toxicological and environmental risk standpoint, this industry could expand even further. This is particularly true as more nations become industrialized. Typical contaminants that are of concern include agricultural byproducts, municipal wastes, industrial solvents, petroleum hydrocarbons, heavy metals, pesticides, radioactive wastes, munitions, and other man-made products.

In order to treat and remediate these contaminants, practitioners have several “tools” in the remediation “toolbox” including physical, chemical, and biological methods. One relatively new biological method that has been applied to address various environmental concerns is phytotechnologies. The method is defined as the use of vegetation to contain, sequester, remove, or degrade inorganic and organic contaminants in soils, sediments, surface waters, and groundwater. Although its roots were developed from other disciplines such as agronomy, agricultural engineering, chemical engineering, forestry, horticulture, hydrogeology, and microbiology, this set of technologies has grown substantially on its own in understanding of and application in the environmental clean-up industry around the world.

This broad-ranging set of technologies utilizes the complex processes occurring within the soil-plant-atmosphere continuum in order to clean up and restore environmentally impacted sites. Like all remediation technologies, the use of vegetation is appropriate under specific situations, but it can be utilized to address both organic and inorganic constituents as well as applied to remediating different impacted media. In some cases, it can address many of these situations simultaneously. This and its broad applicability are, perhaps, its biggest advantage in addition to some other ancillary benefits including aesthetics, waste minimization, low energy requirements, erosion control, greenhouse gas emissions reduction, and cost-effectiveness.

This edition of Advances in Biochemical Engineering and Biotechnology provides a general overview of phytotechnologies. Authors from private industry, academia, the consulting community and regulatory agencies have all contributed to this volume. Starting with the basic processes and mechanisms occurring in the soil-plant-atmosphere continuum, the typical applications of vegetation for cleaning up and remediating contaminated sites are described. Since the growth of vegetation is paramount to this technology, the factors with-
in the subsurface environment affecting growth are discussed in detail as well. These include the processes and factors in the soil environment that affect the plant and the subsurface microbial community. After these two “introductory” chapters, the most prevalent applications of phytotechnologies are reviewed. These include vegetated systems for treating organic and inorganic contaminants in solid media, hydraulic systems for controlling and treating contaminant groundwater plumes, and vegetative covers for surface water protection and landfill leachate management. Finally, this monograph concludes with a discussion of the regulatory implications of applying this technology towards the clean up and remediation of contaminated sites worldwide.

Naperville, August 2002

David T. Tsao
Contents

Overview of Phytotechnologies
D.T. Tsao ... 1

Soil Plant Microbe Interactions in Phytoremediation
R. Karthikeyan, P.A. Kulakow .. 51

The Effect of Plants on the Degradation and Toxicity of Petroleum Contaminants in Soil: A Field Assessment
M.K. Banks, P. Schwab, B. Liu, P.A. Kulakow, J.S. Smith, R. Kim 75

Phytoremediation of Heavy Metals from Soils
T. McIntyre ... 97

Maintaining Hydraulic Control Using Deep Rooted Tree Systems
A. Ferro, M. Gefell, R. Kjelgren, D.S. Lipson, N. Zollinger, S. Jackson 125

Vegetative Covers for Waste Containment
S.A. Rock ... 157

Regulatory Evaluation and Acceptance Issues for Phytotechnology Projects
F.W. Flechas, M. Latady .. 171

Author Index Volumes 51–78 .. 187

Subject Index ... 199