Springer

Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo
Preface

The fifth international Conference in Medical Image Computing and Computer Assisted Intervention (MICCAI 2002) was held in Tokyo from September 25th to 28th, 2002. This was the first time that the conference was held in Asia since its foundation in 1998. The objective of the conference is to offer clinicians and scientists the opportunity to collaboratively create and explore the new medical field. Specifically, MICCAI offers a forum for the discussion of the state of art in computer-assisted interventions, medical robotics, and image processing among experts from multi-disciplinary professions, including but not limited to clinical doctors, computer scientists, and mechanical and biomedical engineers. The expectations of society are very high; the advancement of medicine will depend on computer and device technology in coming decades, as they did in the last decades.

We received 321 manuscripts, of which 41 were chosen for oral presentation and 143 for poster presentation. Each paper has been included in these proceedings in eight-page full paper format, without any differentiation between oral and poster papers. Adherence to this full paper format, along with the increased number of manuscripts, surpassing all our expectations, has led us to issue two proceedings volumes for the first time in MICCAI’s history. Keeping to a single volume by assigning fewer pages to each paper was certainly an option for us considering our budget constraints. However, we decided to increase the volume to offer authors maximum opportunity to argue the state of art in their work and to initiate constructive discussions among the MICCAI audience.

It was our great pleasure to welcome all MICCAI 2002 attendees to Tokyo. Japan, in fall, is known for its beautiful foliage all over the country. The traditional Japanese architectures always catches the eyes of visitors to Japan. We hope that all the MICCAI attendees took the opportunity to enjoy Japan and that they had a scientifically fruitful time at the conference. Those who could not attend the conference should keep the proceedings as a valuable source of information for their academic activities.

We look forward to seeing you at another successful MICCAI in Toronto in 2003.

July 2002

DOHI Takeyoshi and Ron Kikinis
Organizing Committee

Honorary Chair
Kintomo Takakura
Tokyo Women’s Medical University, Japan

General Chair
Takeyoshi Dohi
The University of Tokyo, Japan
Terry Peters
University of Western Ontario, Canada
Junichiro Toriwaki
Nagoya University, Japan

Program Chair
Ron Kikinis
Harvard Medical School and Brigham and Women’s Hospital, USA

Program Co-chairs
Randy Ellis
Queen’s University at Kingston, Canada
Koji Ikuta
Nagoya University, Japan
Gabor Szekely
Swiss Federal Institute of Technology, ETH Zentrum, Switzerland

Tutorial Chair
Yoshinobu Sato
Osaka University, Japan

Industrial Liaison
Masakatsu Fujie
Waseda University, Japan
Makoto Hashizume
Kyushu University, Japan
Hiroshi Iseki
Tokyo Women’s Medical University, Japan
Program Review Committee

Alan Colchester
University of Kent at Canterbury, UK
Wei-Qi Wang
Dept. of E., Fudan University, China
Yongmei Wang
The Chinese University of Hong Kong, China
Jocelyne Troccaz
TIMC Laboratory, France
Erwin Keeve
Research Center Caesar, Germany
Frank Tendick
University of California, San Francisco, USA
Sun I. Kim
Hanyang University, Korea
Pierre Hellier
INRIA Rennes, France
Pheng Ann Heng
The Chinese University of Hong Kong, China
Gabor Szekely
Swiss Federal Institute of Technology Zurich, Switzerland
Kirby Vosburgh
CIMIT/MGH/Harvard Medical School, USA
Allison M. Okamura
Johns Hopkins University, USA
James S. Duncan
Yale University, USA
Baba Vemuri
University of Florida, USA
Terry M. Peters
The John P. Robarts Research Institute, Canada
Allen Tannenbaum
Georgia Institute of Technology, USA
Richard A. Robb
Mayo Clinic, USA
Brian Davies
Imperial College London, UK
David Hawkes
King’s College London, UK
Carl-Fredrik Westin
Harvard Medical School, USA
Chris Taylor
University of Manchester, UK
Derek Hill
King’s College London, UK
Ramin Shahidi
Stanford University, USA
Demetri Terzopoulos
New York University, USA
Shuqian Luo
Capital University of Medical Sciences, USA
Paul Thompson
UCLA School of Medicine, USA
Simon Warfield
Harvard Medical School, USA
Gregory D. Hager
Johns Hopkins University, USA
Kiyoyuki Chinzei
AIST, Japan
Shinichi Tamura
Osaka University, Japan
Jun Toriwaki
Nagoya University, Japan
Yukio Kosugi
Tokyo Institute of Technology, Japan
Jing Bai
Tsinghua University, China
Philippe Cinquin
UJF (University Joseph Fourier), France
Xavier Pennec
INRIA Sophia-Antipolis, France
Frithjof Kruggel
Max-Planck-Institute for Cognitive Neuroscience, Germany
Ewert Bengtsson Uppsala University, Finland
Éve Coste Manièrè INRIA Sophia Antipolis, France
Milan Sonka University of Iowa, USA
Branislav Jaramaz West Penn Hospital, USA
Dimitris Metaxas Rutgers University, USA
Tianzi Jiang Chinese Academy of Sciences, China
Tian-ge Zhuang Shanghai Jiao Tong University, China
Masakatsu G. Fujie Waseda University, Japan
Takehide Asano Chiba University, Japan
Ichiro Sakuma The University of Tokyo, Japan
Alison Noble University of Oxford, UK
Heinz U. Lemke Technical University Berlin, Germany
Robert Howe Harvard University, USA
Michael I Miga Vanderbilt University, USA
Hervé Delingette INRIA Sophia Antipolis, France
D. Louis Collins Montreal Neurological Institute, McGill University, Canada
Kunio Doi University of Chicago, USA
Scott Delp Stanford University, USA
Louis L. Whitcomb Johns Hopkins University, USA
Michael W. Vannier University of Iowa, USA
Jin-Ho Cho Kyungpook National University, Korea
Yukio Yamada University of Electro-Communications, Japan
Yuji Ohta Ochanomizu University, Japan
Karol Miller The University of Western Australia
William (Sandy) Wells Harvard Medical School, Brigham and Women’s Hosp., USA
Kevin Montgomery National Biocomputation Center/Stanford University, USA
Kiyoshi Naemura Tokyo Women’s Medical University, Japan
Yoshihiko Nakamura The University of Tokyo, Japan
Tosio Nakagohri National Cancer Center Hospital East, Japan
Yasushi Yamauchi AIST, Japan
Masaki Kitajima Keio University, Japan
Hiroshi Iseki Tokyo Women’s Medical University, Japan
Yoshinobu Sato Osaka University, Japan
Amami Kato Osaka University School of Medicine, Japan
Eiju Watanabe Tokyo Metropolitan Police Hospital, Japan
Miguel Angel Gonzalez Ballester INRIA Sophia Antipolis, France
Yoshihiro Muragaki Tokyo Women’s Medical University, Japan
Makoto Hashizume Kyushu University, Japan
Paul Suetens K.U. Leuven, Medical Image Computing, Belgium
Michael D. Sherar Ontario Cancer Institute/University of Toronto, Canada
Kyojiro Nambu Medical Systems Company, Toshiba Corporation, Japan
Naoki Suzuki Institute for High Dimensional Medical Imaging, Jikei University School of Medicine, Japan
Nobuhiko Sugano Osaka University, Japan
Etsuko Kobayashi The University of Tokyo, Japan
Grégoire Malandain INRIA Sophia Antipolis, France
Russell H. Taylor Johns Hopkins University, USA
Maryellen Giger University of Chicago, USA
Hideaki Koizumi Advanced Research Laboratory, Hitachi, Ltd., Japan
Rjan Smedby Linköping University, Sweden
Karl Heinz Hoene University of Hamburg, Germany
Sherif Makram-Ebeid Philips Research France
Stéphane Lavallée PRAXIM, France
Josien Pluim University Medical Center Utrecht, The Netherlands
Darwin G. Caldwell University of Salford, England
Vaillant Regis GEMS, Switzerland
Nassir Navab Siemens Corporate Research, USA
Eric Grimson MIT AI Lab, USA
Wiro Niessen University Medical Center Utrecht, The Netherlands
Richard Satava Yale University School of Medicine, USA
Takeyoshi Dohi The University of Tokyo, Japan
Guido Gerig UNC Chapel Hill, Department of Computer Science, USA
Ferenc Jolesz Brigham and Women’s Hospital Harvard Medical School, USA
Leo Joskowicz The Hebrew University of Jerusalem, ISRAEL
Antonio Bicchi University of Pisa, Italy
Wolfgang Schlegel DKFZ, Germany
Richard Bucholz Saint Louis University School of Medicine, USA
Robert Galloway Vanderbilt University, USA
Juan Ruiz-Alzola University of Las Palmas de Gran Canaria, Spain
Tim Salcudean
University of British Columbia, Canada

Stephen Pizer
University of North Carolina, USA

J. Michael Fitzpatrick
Vanderbilt University, USA

Gabor Fichtinger
Johns Hopkins University, USA

Koji Ikuta
Nagoya University, Japan

Jean Louis Coatrieux
University of Rennes-INSERM, France

Jaydev P. Desai
Drexel University, USA

Chris Johnson
Scientific Computing and Imaging Institute, USA

Luc Soler
IRCAD, France

Wieslaw L. Nowinski
Biomedical Imaging Lab, Singapore

Andreas Pommert
University Hospital Hamburg-Eppendorf, Germany

Heinz-Otto Peitgen
MeVis, Germany

Rudolf Fahlbusch
Neurochirurgische Klinik, Germany

Simon Wildermuth
University Hospital Zurich, Inst. Diagnostic Radiology, Switzerland

Chuck Meyer
University of Michigan, USA

Johan Van Cleynenbreugel
Medical Image Computing, ESAT-Radiologie, K.U. Leuven, Belgium

Dirk Vandermeulen
K.U. Leuven, Belgium

Karl Rohr
International University in Germany, Germany

Martin Styner
Duke Image Analysis Lab, UNC Neuro Image Analysis Lab, Germany

Catherina R. Burghart
University of Karlsruhe, Germany

Fernando Bello
Imperial College of Science, Technology and Medicine, UK

Colin Studholme
University of California, San Francisco, USA

Dinesh Pai
University of British Columbia, Canada

Paul Milgram
University of Toronto, Canada

Michael Bronskill
University of Toronto/Sunnybrook Hospital, Canada

Nobuhiko Hata
The University of Tokyo, Japan

Ron Kikinis
Brigham and Women’s Hospital and Harvard Medical School, USA

Lutz Nolte
University of Bern, Germany

Ralph Mosges
IMSIE Univ. of Cologne, Germany

Bart M. ter Haar Romeny
Eindhoven University of Technology, The Netherlands

Steven Haker
Brigham and Women’s Hospital and Harvard Medical School, USA
XII Organization

Local Organizing Committee

Ichiro Sakuma The University of Tokyo, Japan
Mitsuo Shimada Kyushu University, Japan
Nobuhiko Hata The University of Tokyo, Japan
Etsuko Kobayashi The University of Tokyo, Japan

MICCAI Board

Alan C.F. Colchester University of Kent at Canterbury, UK
(General Chair)

Nicholas Ayache INRIA Sophia Antipolis, France
Anthony M. DiGioia UPMC Shadyside Hospital, Pittsburgh, USA
Takeyoshi Dohi University of Tokyo, Japan
James Duncan Yale University, New Haven, USA
Karl Heinz Höhne University of Hamburg, Germany
Ron Kikinis Harvard Medical School, Boston, USA
Stephen M. Pizer University of North Carolina, Chapel Hill, USA
Richard A. Robb Mayo Clinic, Rochester, USA
Russell H. Taylor Johns Hopkins University, Baltimore, USA
Jocelyne Troccaz University of Grenoble, France
Max A. Viergever University Medical Center Utrecht, The Netherlands
Table of Contents, Part I

Robotics – Endoscopic Device

Using an Endoscopic Solo Surgery Simulator for Quantitative Evaluation of Human-Machine Interface in Robotic Camera Positioning Systems ... 1
A. Nishikawa, D. Negoro, H. Kakutani, F. Miyazaki, M. Sekimoto,
M. Yasui, S. Takiguchi, M. Monden

A. Krupa, M. de Mathelin, C. Doignon, J. Gangloff, G. Morel,
L. Soler, J. Leroy, J. Marescaux

Development of a Compact Cable-Driven Laparoscopic Endoscope Manipulator ... 17
P.J. Berkelman, P. Cinquin, J. Troccaz, J.-M. Ayoubi, C. Létoublon

Flexible Calibration of Actuated Stereoscopic Endoscope for Overlay in Robot Assisted Surgery 25
F. Mourgues, É. Coste-Manière

Metrics for Laparoscopic Skills Trainers: The Weakest Link! 35
S. Cotin, N. Stylopoulos, M. Ottensmeyer, P. Neumann,
D. Rattner, S. Dawson

Surgical Skill Evaluation by Force Data for Endoscopic Sinus Surgery Training System ... 44
Y. Yamauchi, J. Yamashita, O. Morikawa, R. Hashimoto,
M. Mochimaru, Y. Fukui, H. Uno, K. Yokoyama

Development of a Master Slave Combined Manipulator for Laparoscopic Surgery – Functional Model and Its Evaluation 52
M. Jinno, N. Matsuhira, T. Sunaoshi, T. Hato, T. Miyagawa,
Y. Morikawa, T. Furukawa, S. Ozawa, M. Kitajima, K. Nakazawa

Development of Three-Dimensional Endoscopic Ultrasound System with Optical Tracking ... 60
N. Koizumi, K. Sumiyama, N. Suzuki, A. Hattori, H. Tajiri,
A. Uchiyama

Real-Time Haptic Feedback in Laparoscopic Tools for Use in Gastro-Intestinal Surgery .. 66
T. Hu, A.E. Castellanos, G. Tholey, J.P. Desai

Small Occupancy Robotic Mechanisms for Endoscopic Surgery 75
Y. Kobayashi, S. Chiyoda, K. Watabe, M. Okada, Y. Nakamura
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotics in Image-Guided Surgery</td>
<td>83</td>
</tr>
<tr>
<td>Development of MR Compatible Surgical Manipulator toward a Unified Support System for Diagnosis and Treatment of Heart Disease</td>
<td></td>
</tr>
<tr>
<td>Transrectal Prostate Biopsy Inside Closed MRI Scanner with Remote Actuation, under Real-Time Image Guidance</td>
<td>91</td>
</tr>
<tr>
<td>A New, Compact MR-Compatible Surgical Manipulator for Minimally Invasive Liver Surgery</td>
<td>99</td>
</tr>
<tr>
<td>D. Kim, E. Kobayashi, T. Dohi, I. Sakuma</td>
<td></td>
</tr>
<tr>
<td>Micro-grasping Forceps Manipulator for MR-Guided Neurosurgery</td>
<td>107</td>
</tr>
<tr>
<td>Endoscope Manipulator for Trans-nasal Neurosurgery, Optimized for and Compatible to Vertical Field Open MRI</td>
<td>114</td>
</tr>
<tr>
<td>Y. Koseki, T. Washio, K. Chinzei, H. Iseki</td>
<td></td>
</tr>
<tr>
<td>A Motion Adaptable Needle Placement Instrument Based on Tumor Specific Ultrasonic Image Segmentation</td>
<td>122</td>
</tr>
<tr>
<td>J.-S. Hong, T. Dohi, M. Hasizume, K. Konishi, N. Hata</td>
<td></td>
</tr>
<tr>
<td>Robotics – Teleoperation</td>
<td></td>
</tr>
<tr>
<td>Experiment of Wireless Tele-echography System by Controlling Echographic Diagnosis Robot</td>
<td>130</td>
</tr>
<tr>
<td>K. Masuda, N. Tateishi, Y. Suzuki, E. Kimura, Y. Wie, K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>Experiments with the TER Tele-echography Robot</td>
<td>138</td>
</tr>
<tr>
<td>The Effect of Visual and Haptic Feedback on Manual and Teleoperated Needle Insertion</td>
<td>147</td>
</tr>
<tr>
<td>O. Gerovichev, P. Marayong, A.M. Okamura</td>
<td></td>
</tr>
<tr>
<td>Analysis of Suture Manipulation Forces for Teleoperation with Force Feedback</td>
<td>155</td>
</tr>
<tr>
<td>M. Kitagawa, A.M. Okamura, B.T. Bethea, V.L. Gott, W.A. Baumgartner</td>
<td></td>
</tr>
</tbody>
</table>
Remote Microsurgery System for Deep and Narrow Space –
Development of New Surgical Procedure and Micro-robotic Tool

163

Hyper-finger for Remote Minimally Invasive Surgery in Deep Area

K. Ikuta, S. Daifu, T. Hasegawa, H. Higashikawa

173

Robotics – Device

Safety-Active Catheter with Multiple-Segments Driven
by Micro-hydraulic Actuators

K. Ikuta, H. Ichikawa, K. Suzuki

182

A Stem Cell Harvesting Manipulator with Flexible Drilling Unit
for Bone Marrow Transplantation

K. Ohashi, N. Hata, T. Matsumura, N. Yahagi, I. Sakuma, T. Dohi

192

Liver Tumor Biopsy in a Respiring Phantom with the Assistance
of a Novel Electromagnetic Navigation Device

F. Banovac, N. Glossop, D. Lindisch, D. Tanaka, E. Levy, K. Cleary

200

Non-invasive Measurement of Biomechanical Properties
of in vivo Soft Tissues

Lianghao Han, Michael Burcher, J. Alison Noble

208

Measurement of the Tip and Friction Force Acting on a Needle
during Penetration

H. Kataoka, T. Washio, K. Chinzei, K. Mizuhara, C. Simone,

A.M. Okamura

216

Contact Force Evaluation of Orthoses for the Treatment
of Malformed Ears

A. Hanafusa, T. Isomura, Y. Sekiguchi, H. Tahashi, T. Dohi

224

Computer-Assisted Correction of Bone Deformities
Using A 6-DOF Parallel Spatial Mechanism

O. Iyun, D.P. Borschneck, R.E. Ellis

232

Robotics – System

Development of 4-Dimensional Human Model System for the Patient
after Total Hip Arthroplasty

Y. Otake, K. Hagio, N. Suzuki, A. Hattori, N. Sugano, K. Yonenobu,

T. Ochi

241

Development of a Training System for Cardiac Muscle Palpation

T. Tokuyasu, S. Oota, K. Asami, T. Kitamura, G. Sakaguchi,

T. Koyama, M. Komeda

248
Preliminary Results of an Early Clinical Experience with the Acrobot™ System for Total Knee Replacement Surgery 256
 M. Jakopec, S.J. Harris, F. Rodriguez y Baena, P. Gomes, J. Cobb, B.L. Davies

A Prostate Brachytherapy Training Rehearsal System – Simulation of Deformable Needle Insertion ... 264
 A. Kimura, J. Camp, R. Robb, B. Davis

A Versatile System for Computer Integrated Mini-invasive Robotic Surgery ... 272
 L. Adhami, É. Coste-Manière

Measurements of Soft-Tissue Mechanical Properties to Support Development of a Physically Based Virtual Animal Model 282
 C. Bruyns, M. Ottensmeyer

Validation

Validation of Tissue Modelization and Classification Techniques in T1-Weighted MR Brain Images ... 290
 M. Bach Cuadra, B. Platel, E. Solanas, T. Butz, J.-Ph. Thiran

Validation of Image Segmentation and Expert Quality with an Expectation-Maximization Algorithm .. 298
 S.K. Warfield, K.H. Zou, W.M. Wells

Validation of Volume-Preserving Non-rigid Registration: Application to Contrast-Enhanced MR-Mammography 307
 C. Tanner, J.A. Schnabel, A. Degenhard, A.D. Castellano-Smith,
 C. Hayes, M.O. Leach, D.R. Hose, D.L.G. Hill, D.J. Hawkes

Statistical Validation of Automated Probabilistic Segmentation against Composite Latent Expert Ground Truth in MR Imaging of Brain Tumors . 315
 K.H. Zou, W.M. Wells III, M.R. Kaus, R. Kikinis, F.A. Jolesz,
 S.K. Warfield

A Posteriori Validation of Pre-operative Planning in Functional Neurosurgery by Quantification of Brain Pneumocephalus 323
 É. Bardinet, P. Cathier, A. Roche, N. Ayache, D. Dormont

Affine Transformations and Atlases: Assessing a New Navigation Tool for Knee Arthroplasty .. 331
 B. Ma, J.F. Rudan, R.E. Ellis

Effectiveness of the ROBODOC System during Total Hip Arthroplasty in Preventing Intraoperative Pulmonary Embolism 339
 K. Hagio, N. Sugano, M. Takashina, T. Nishii, H. Yoshikawa, T. Ochi
Medical Image Synthesis via Monte Carlo Simulation 347
 J.Z. Chen, S.M. Pizer, E.L. Chaney, S. Joshi

Performance Issues in Shape Classification ... 355
 S.J. Timoner, P. Golland, R. Kikinis, M.E. Shenton,
 W.E.L. Grimson, W.M. Wells III

Brain-Tumor, Cortex, Vascular Structure

Statistical Analysis of Longitudinal MRI Data:
 Applications for Detection of Disease Activity in MS 363
 S. Prima, N. Ayache, A. Janke, S.J. Francis, D.L. Arnold,
 D.L. Collins

Automatic Brain and Tumor Segmentation .. 372
 N. Moon, E. Bullitt, K. van Leemput, G. Gerig

Atlas-Based Segmentation of Pathological Brains Using a Model
 of Tumor Growth .. 380
 M. Bach Cuadra, J. Gomez, P. Hagmann, C. Pollo, J.-G. Villemure,
 B.M. Dawant, J.-Ph. Thiran

Recognizing Deviations from Normalcy for Brain Tumor Segmentation 388
 D.T. Gering, W.E.L. Grimson, R. Kikinis

3D-Visualization and Registration for Neurovascular Compression
 Syndrome Analysis ... 396
 P. Hastreiter, R. Naraghi, B. Tomandl, M. Bauer, R. Fahlbusch

3D Guide Wire Reconstruction from Biplane Image Sequences
 for 3D Navigation in Endovascular Interventions 404
 S.A.M. Baert, E.B. van der Kraats, W.J. Niessen

Standardized Analysis of Intracranial Aneurysms
 Using Digital Video Sequences .. 411
 S. Iserhardt-Bauer, P. Hastreiter, B. Tomandl, N. Köstner,
 M. Schempershofs, U. Nissen, T. Ertl

Demarcation of Aneurysms Using the Seed and Cull Algorithm 419
 R.A. McLaughlin, J.A. Noble

Gyral Parcellation of the Cortical Surface
 Using Geodesic Voronoï Diagrams ... 427
 A. Cachia, J.-F. Mangin, D. Rivière, D. Papadopoulos-Orfanos,
 I. Bloch, J. Régis

Regularized Stochastic White Matter Tractography
 Using Diffusion Tensor MRI ... 435
 M. Björnemo, A. Brun, R. Kikinis, C.-F. Westin
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulcal Segmentation for Cortical Thickness Measurements</td>
<td>443</td>
</tr>
<tr>
<td>C. Hutton, E. De Vita, R. Turner</td>
<td></td>
</tr>
<tr>
<td>Labeling the Brain Surface Using a Deformable Multiresolution Mesh</td>
<td>451</td>
</tr>
<tr>
<td>S. Jaume, B. Macq, S.K. Warfield</td>
<td></td>
</tr>
<tr>
<td>Brain – Imaging and Analysis</td>
<td></td>
</tr>
<tr>
<td>New Approaches to Estimation of White Matter Connectivity in Diffusion</td>
<td>459</td>
</tr>
<tr>
<td>Tensor MRI: Elliptic PDEs and Geodesics in a Tensor-Warped Space</td>
<td></td>
</tr>
<tr>
<td>L. O’Donnell, S. Haker, C.-F. Westin</td>
<td></td>
</tr>
<tr>
<td>Improved Detection Sensitivity in Functional MRI Data</td>
<td>467</td>
</tr>
<tr>
<td>Using a Brain Parcelling Technique</td>
<td></td>
</tr>
<tr>
<td>G. Flandin, F. Kherif, X. Pennec, G. Malandain, N. Ayache, J.-B. Poline</td>
<td></td>
</tr>
<tr>
<td>A Spin Glass Based Framework to Untangle Fiber Crossing</td>
<td>475</td>
</tr>
<tr>
<td>in MR Diffusion Based Tracking</td>
<td></td>
</tr>
<tr>
<td>Y. Cointepas, C. Poupon, D. Le Bihan, J.-F. Mangin</td>
<td></td>
</tr>
<tr>
<td>Automated Approximation of Lateral Ventricular Shape</td>
<td>483</td>
</tr>
<tr>
<td>in Magnetic Resonance Images of Multiple Sclerosis Patients</td>
<td></td>
</tr>
<tr>
<td>B. Sturm, D. Meier, E. Fisher</td>
<td></td>
</tr>
<tr>
<td>An Intensity Consistent Approach to the Cross Sectional Analysis</td>
<td>492</td>
</tr>
<tr>
<td>of Deformation Tensor Derived Maps of Brain Shape</td>
<td></td>
</tr>
<tr>
<td>C. Studholme, V. Cardenas, A. Maudsley, M. Weiner</td>
<td></td>
</tr>
<tr>
<td>Detection of Inter-hemispheric Asymmetries</td>
<td>500</td>
</tr>
<tr>
<td>of Brain Perfusion in SPECT</td>
<td></td>
</tr>
<tr>
<td>B. Aubert-Broche, C. Grova, P. Jannin, I. Buwat, H. Benali, B. Gibaud</td>
<td></td>
</tr>
<tr>
<td>Discriminative Analysis for Image-Based Studies</td>
<td>508</td>
</tr>
<tr>
<td>Automatic Generation of Training Data for Brain Tissue Classification from MRI</td>
<td>516</td>
</tr>
<tr>
<td>C.A. Cocosco, A.P. Zijdenbos, A.C. Evans</td>
<td></td>
</tr>
<tr>
<td>The Putamen Intensity Gradient in CJD Diagnosis</td>
<td>524</td>
</tr>
<tr>
<td>A. Hojjat, D. Collie, A.C.F. Colchester</td>
<td></td>
</tr>
<tr>
<td>A Dynamic Brain Atlas</td>
<td>532</td>
</tr>
<tr>
<td>D.L.G. Hill, J.V. Hajnal, D. Rueckert, S.M. Smith, T. Hartkens, K. McLeish</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Model Library for Deformable Model-Based Segmentation of 3-D Brain MR-Images</td>
<td>540</td>
</tr>
<tr>
<td>J. Koikkalainen, J. Lötjönen</td>
<td></td>
</tr>
<tr>
<td>Co-registration of Histological, Optical and MR Data of the Human Brain</td>
<td>548</td>
</tr>
<tr>
<td>É. Bardinet, S. Ourselin, D. Dormont, G. Malandain, D. Tandé, K. Parain, N. Ayache, J. Yelnik</td>
<td></td>
</tr>
<tr>
<td>Segmentation</td>
<td></td>
</tr>
<tr>
<td>An Automated Segmentation Method of Kidney Using Statistical Information</td>
<td>556</td>
</tr>
<tr>
<td>B. Tsagaan, A. Shimizu, H. Kobatake, K. Miyakawa</td>
<td></td>
</tr>
<tr>
<td>Incorporating Non-rigid Registration into Expectation Maximization Algorithm to Segment MR Images</td>
<td>564</td>
</tr>
<tr>
<td>Segmentation of 3D Medical Structures Using Robust Ray Propagation</td>
<td>572</td>
</tr>
<tr>
<td>H. Tek, M. Bergholdt, D. Comaniciu, J. Williams</td>
<td></td>
</tr>
<tr>
<td>MAP MRF Joint Segmentation and Registration</td>
<td>580</td>
</tr>
<tr>
<td>P.P. Wyatt, J.A. Noble</td>
<td></td>
</tr>
<tr>
<td>Statistical Neighbor Distance Influence in Active Contours</td>
<td>588</td>
</tr>
<tr>
<td>J. Yang, L.H. Staib, J.S. Duncan</td>
<td></td>
</tr>
<tr>
<td>Active Watersheds: Combining 3D Watershed Segmentation and Active Contours to Extract Abdominal Organs from MR Images</td>
<td>596</td>
</tr>
<tr>
<td>R.J. Lapeer, A.C. Tan, R. Aldridge</td>
<td></td>
</tr>
<tr>
<td>Cardiac Application</td>
<td></td>
</tr>
<tr>
<td>Coronary Intervention Planning Using Hybrid 3D Reconstruction</td>
<td>604</td>
</tr>
<tr>
<td>O. Wink, R. Kemkers, S.J. Chen, J.D. Carroll</td>
<td></td>
</tr>
<tr>
<td>Deformation Modelling Based on PLSR for Cardiac Magnetic Resonance Perfusion Imaging</td>
<td>612</td>
</tr>
<tr>
<td>J. Gao, N. Ablitt, A. Elkington, G.-Z. Yang</td>
<td></td>
</tr>
<tr>
<td>Automated Segmentation of the Left and Right Ventricles in 4D Cardiac SPAMM Images</td>
<td>620</td>
</tr>
<tr>
<td>A. Montillo, D. Metaxas, L. Axel</td>
<td></td>
</tr>
<tr>
<td>Stochastic Finite Element Framework for Cardiac Kinematics Function and Material Property Analysis</td>
<td>634</td>
</tr>
<tr>
<td>P. Shi, H. Liu</td>
<td></td>
</tr>
</tbody>
</table>
Atlas-Based Segmentation and Tracking of 3D Cardiac MR Images Using Non-rigid Registration .. 642
 M. Lorenzo-Valdés, G.I. Sanchez-Ortiz, R. Mohiaddin, D. Rueckert

Myocardial Delineation via Registration in a Polar Coordinate System 651
 N.M.I. Noble, D.L.G. Hill, M. Breeuwer, J.A. Schnabel, D.J. Hawkes,
 F.A. Gerritsen, R. Razavi

Integrated Image Registration for Cardiac MR Perfusion Data 659
 R. Bansal, G. Funka-Lea

4D Active Surfaces for Cardiac Analysis .. 667
 A. Yezzi, A. Tannenbaum

A Computer Diagnosing System of Dementia
Using Smooth Pursuit Oculogyration .. 674
 I. Fukumoto

Combinative Multi-scale Level Set Framework
for Echocardiographic Image Segmentation 682
 N. Lin, W. Yu, J.S. Duncan

Automatic Hybrid Segmentation of Dual Contrast Cardiac MR Data 690
 A. Pednekar, I.A. Kakadiaris, V. Zavaletta, R. Muthupillai, S. Flamm

Efficient Partial Volume Tissue Classification in MRI Scans 698
 A. Noe, J.C. Gee

In-vivo Strain and Stress Estimation of the Left Ventricle
from MRI Images ... 706
 Z. Hu, D. Metaxas, L. Axel

Biomechanical Model Construction from Different Modalities:
Application to Cardiac Images ... 714
 M. Sermesant, C. Forest, X. Pennec, H. Delingette, N. Ayache

Comparison of Cardiac Motion Across Subjects
Using Non-rigid Registration .. 722
 A. Rao, G.I. Sanchez-Ortiz, R. Chandrashekara, M. Lorenzo-Valdés,
 R. Mohiaddin, D. Rueckert

Computer Assisted Diagnosis

From Colour to Tissue Histology: Physics Based Interpretation
of Images of Pigmented Skin Lesions .. 730
 E. Claridge, S. Cotton, P. Hall, M. Moncrieff

In-vivo Molecular Investigations of Live Tissues
Using Diffracting Sources ... 739
 V. Ntziachristos, J. Ripoll, E. Graves, R. Weissleder
Automatic Detection of Nodules Attached to Vessels in Lung CT by Volume Projection Analysis ... 746
 G.-Q. Wei, L. Fan, J.Z. Qian

LV-RV Shape Modeling Based on a Blended Parameterized Model 753
 K. Park, D.N. Metaxas, L. Axel

Characterization of Regional Pulmonary Mechanics from Serial MRI Data ... 762
 J. Gee, T. Sundaram, I. Hasegawa, H. Uematsu, H. Hatabu

Using Voxel-Based Morphometry to Examine Atrophy-Behavior Correlates in Alzheimer’s Disease and Frontotemporal Dementia 770
 M.P. Lin, C. Devita, J.C. Gee, M. Grossman

Detecting Wedge Shaped Defects in Polarimetric Images of the Retinal Nerve Fiber Layer ... 777
 K. Vermeer, F. Vos, H. Lemij, A. Vossepoel

Automatic Statistical Identification of Neuroanatomical Abnormalities between Different Populations ... 785
 A. Guimond, S. Egorova, R.J. Killiany, M.S. Albert, C.R.G. Guttmann

Example-Based Assisting Approach for Pulmonary Nodule Classification in 3-D Thoracic CT Images ... 793
 Y. Kawata, N. Niki, H. Ohmatsu, N. Moriyama

Author Index .. 801
Table of Contents, Part II

Tubular Structures

Automated Nomenclature Labeling of the Bronchial Tree in 3D-CT Lung Images ... 1
*H. Kitaoka, Y. Park, J. Tschirren, J. Reinhardt, M. Sonka,
G. McLennan, E.A. Hoffman*

Segmentation, Skeletonization, and Branchpoint Matching – A Fully Automated Quantitative Evaluation of Human Intrathoracic Airway Trees ... 12
J. Tschirren, K. Palágyi, J.M. Reinhardt, E.A. Hoffman, M. Sonka

Improving Virtual Endoscopy for the Intestinal Tract 20
M. Harders, S. Wildermuth, D. Weishaupt, G. Székely

Finding a Non-continuous Tube by Fuzzy Inference for Segmenting the MR Cholangiography Image .. 28
C. Yasuba, S. Kobashi, K. Kondo, Y. Hata, S. Imawaki, M. Ishikawa

Level-Set Based Carotid Artery Segmentation for Stenosis Grading 36
C.M. van Bemmel, L.J. Spreeuwers, M.A. Viergever, W.J. Niessen

Interventions – Augmented Reality

PC-Based Control Unit for a Head Mounted Operating Microscope for Augmented Reality Visualization in Surgical Navigation 44
*M. Figl, W. Birkfellner, F. Watzinger, F. Wanschitz, J. Hummel,
R. Hanel, R. Ewers, H. Bergmann*

Technical Developments for MR-Guided Microwave Thermocoagulation Therapy of Liver Tumors 52
*S. Morikawa, T. Inubushi, Y. Kurumi, S. Naka, K. Sato, T. Tani,
N. Hata, V. Seshan, H.A. Haque*

Robust Automatic C-Arm Calibration for Fluoroscopy-Based Navigation: A Practical Approach .. 60
H. Livyatan, Z. Yaniv, L. Joskowicz

Application of a Population Based Electrophysiological Database to the Planning and Guidance of Deep Brain Stereotactic Neurosurgery 69
*K.W. Finnis, Y.P. Starreveld, A.G. Parrent, A.F. Sadikot,
T.M. Peters*
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Image Overlay System with Enhanced Reality for Percutaneous Therapy Performed Inside CT Scanner</td>
<td>77</td>
</tr>
<tr>
<td>K. Masamune, G. Fichtinger, A. Deguet, D. Matsuka, R. Taylor</td>
<td></td>
</tr>
<tr>
<td>High-Resolution Stereoscopic Surgical Display Using Parallel Integral Videography and Multi-projector</td>
<td>85</td>
</tr>
<tr>
<td>H. Liao, N. Hata, M. Iwahara, S. Nakajima, I. Sakuma, T. Dohi</td>
<td></td>
</tr>
<tr>
<td>Three-Dimensional Display for Multi-sourced Activities and Their Relations in the Human Brain by Information Flow between Estimated Dipoles</td>
<td>93</td>
</tr>
<tr>
<td>N. Take, Y. Kosugi, T. Musha</td>
<td></td>
</tr>
<tr>
<td>Interventions – Navigation</td>
<td></td>
</tr>
<tr>
<td>2D Guide Wire Tracking during Endovascular Interventions</td>
<td>101</td>
</tr>
<tr>
<td>S.A.M. Baert, W.J. Niessen</td>
<td></td>
</tr>
<tr>
<td>Specification Method of Surface Measurement for Surgical Navigation:</td>
<td></td>
</tr>
<tr>
<td>Ridgeline Based Organ Registration</td>
<td>109</td>
</tr>
<tr>
<td>N. Furushiro, T. Saito, Y. Masutani, I. Sakuma</td>
<td></td>
</tr>
<tr>
<td>An Augmented Reality Navigation System with a Single-Camera Tracker:</td>
<td></td>
</tr>
<tr>
<td>System Design and Needle Biopsy Phantom Trial</td>
<td>116</td>
</tr>
<tr>
<td>F. Sauer, A. Khamene, S. Vogt</td>
<td></td>
</tr>
<tr>
<td>A Novel Laser Guidance System for Alignment of Linear Surgical Tools:</td>
<td></td>
</tr>
<tr>
<td>Its Principles and Performance Evaluation as a Man–Machine System</td>
<td>125</td>
</tr>
<tr>
<td>T. Sasama, N. Sugano, Y. Sato, Y. Momoi, T. Koyama, Y. Nakajima,</td>
<td></td>
</tr>
<tr>
<td>I. Sakuma, M. Fujie, K. Yonenobu, T. Ochi, S. Tamura</td>
<td></td>
</tr>
<tr>
<td>Navigation of High Intensity Focused Ultrasound Applicator with an Integrated Three-Dimensional Ultrasound Imaging System</td>
<td>133</td>
</tr>
<tr>
<td>I. Sakuma, Y. Takai, E. Kobayashi, H. Inada, K. Fujimoto, T. Asano</td>
<td></td>
</tr>
<tr>
<td>Robust Registration of Multi-modal Images:</td>
<td></td>
</tr>
<tr>
<td>Towards Real-Time Clinical Applications</td>
<td>140</td>
</tr>
<tr>
<td>S. Ourselin, R. Stefanescu, X. Pennec</td>
<td></td>
</tr>
<tr>
<td>3D Ultrasound System Using a Magneto-optic Hybrid Tracker for Augmented Reality Visualization in Laparoscopic Liver Surgery</td>
<td>148</td>
</tr>
<tr>
<td>M. Nakamoto, Y. Sato, M. Miyamoto, Y. Nakamjima, K. Konishi,</td>
<td></td>
</tr>
<tr>
<td>M. Shimada, M. Hashizume, S. Tamura</td>
<td></td>
</tr>
<tr>
<td>Interactive Intra-operative 3D Ultrasound Reconstruction and Visualization</td>
<td>156</td>
</tr>
<tr>
<td>D.G. Gobbi, T.M. Peters</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Projection Profile Matching for Intraoperative MRI Registration</td>
<td>164</td>
</tr>
<tr>
<td>Embedded in MR Imaging Sequence</td>
<td></td>
</tr>
<tr>
<td>N. Hata, J. Tokuda, S. Morikawa, T. Dohi</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>A New Tool for Surgical Training in Knee Arthroscopy</td>
<td>170</td>
</tr>
<tr>
<td>G. Megali, O. Tonet, M. Mazzoni, P. Dario, A. Vascellari, M. Marcacci</td>
<td></td>
</tr>
<tr>
<td>Combining Volumetric Soft Tissue Cuts for Interventional Surgery Simulation</td>
<td>178</td>
</tr>
<tr>
<td>M. Nakao, T. Kuroda, H. Oyama, M. Komori, T. Matsuda, T. Takahashi</td>
<td></td>
</tr>
<tr>
<td>Virtual Endoscopy Using Cubic QuickTime-VR Panorama Views</td>
<td>186</td>
</tr>
<tr>
<td>U. Tiede, N. von Sternberg-Gospos, P. Steiner, K.H. Höhne</td>
<td></td>
</tr>
<tr>
<td>High Level Simulation & Modeling for Medical Applications – Virtual Endoscopy Using Cubic QuickTime-VR Panorama Views</td>
<td>193</td>
</tr>
<tr>
<td>Ultrasound Case</td>
<td></td>
</tr>
<tr>
<td>A. Chihoub</td>
<td></td>
</tr>
<tr>
<td>Generation of Pathologies for Surgical Training Simulators</td>
<td>202</td>
</tr>
<tr>
<td>R. Sierra, G. Székely, M. Bajka</td>
<td></td>
</tr>
<tr>
<td>Collision Detection Algorithm for Deformable Objects Using OpenGL</td>
<td>211</td>
</tr>
<tr>
<td>S. Aharon, C. Lenglet</td>
<td></td>
</tr>
<tr>
<td>Online Multiresolution Volumetric Mass Spring Model for Real Time Soft Tissue Deformation</td>
<td>219</td>
</tr>
<tr>
<td>C. Paloc, F. Bello, R.I. Kitney, A. Darzi</td>
<td></td>
</tr>
<tr>
<td>Orthosis Design System for Malformed Ears Based on Spline Approximation</td>
<td>227</td>
</tr>
<tr>
<td>A. Hanafusa, T. Isomura, Y. Sekiguchi, H. Takahashi, T. Dohi</td>
<td></td>
</tr>
<tr>
<td>Cutting Simulation of Manifold Volumetric Meshes</td>
<td>235</td>
</tr>
<tr>
<td>C. Forest, H. Delingette, N. Ayache</td>
<td></td>
</tr>
<tr>
<td>Simulation of Guide Wire Propagation for Minimally Invasive Vascular Interventions</td>
<td>245</td>
</tr>
<tr>
<td>T. Alderliesten, M.K. Konings, W.J. Niessen</td>
<td></td>
</tr>
<tr>
<td>Needle Insertion Modelling for the Interactive Simulation of Percutaneous Procedures</td>
<td>253</td>
</tr>
<tr>
<td>S.P. DiMaio, S.E. Salcudean</td>
<td></td>
</tr>
<tr>
<td>3D Analysis of the Alignment of the Lower Extremity in High Tibial Osteotomy</td>
<td>261</td>
</tr>
</tbody>
</table>
Simulation of Intra-operative 3D Coronary Angiography for Enhanced Minimally Invasive Robotic Cardiac Intervention 268

Computer Investigation into the Anatomical Location of the Axes of Rotation in the Normal Knee .. 276
 S. Martelli, A. Visani

Modeling

Macroscopic Modeling of Vascular Systems 284
 D. Szczerba, G. Székely

Spatio-temporal Directional Filtering for Improved Inversion of MR Elastography Images .. 293
 A. Manduca, D.S. Lake, R.L. Ehman

RBF-Based Representation of Volumetric Data: Application in Visualization and Segmentation 300
 Y. Masutani

An Anatomical Model of the Knee Joint Obtained by Computer Dissection ... 308
 S. Martelli, F. Acquaroli, V. Pinskerova, A. Spettol, A. Visani

Models for Planning and Simulation in Computer Assisted Orthognatic Surgery ... 315
 M. Chabanas, C. Marecaux, Y. Payan, F. Boutault

Simulation of the Exophthalmia Reduction Using a Finite Element Model of the Orbital Soft Tissues 323
 V. Luboz, A. Pedrono, P. Swider, F. Boutault, Y. Payan

A Real-Time Deformable Model for Flexible Instruments Inserted into Tubular Structures .. 331
 M. Kukuk, B. Geiger

Modeling of the Human Orbit from MR Images 339

Accurate and High Quality Triangle Models from 3D Grey Scale Images ... 348
 P.W. de Bruin, P.M. van Meeteren, F.M. Vos, A.M. Vossepoel, F.H. Post

Intraoperative Fast 3D Shape Recovery of Abdominal Organs in Laparoscopy ... 356
 M. Hayashiibe, N. Suzuki, A. Hattori, Y. Nakamura
Statistical Shape Modeling

Integrated Approach for Matching Statistical Shape Models with Intra-operative 2D and 3D Data

M. Fleute, S. Lavallée, L. Desbat
364

Building and Testing a Statistical Shape Model of the Human Ear Canal

R. Paulsen, R. Larsen, C. Nielsen, S. Laugesen, B. Erbsøll
373

Shape Characterization of the Corpus Callosum in Schizophrenia Using Template Deformation

A. Dubb, B. Avants, R. Gur, J. Gee
381

3D Prostate Surface Detection from Ultrasound Images Based on Level Set Method

S. Fan, L.K. Voon, N.W. Sing
389

A Bayesian Approach to *in vivo* Kidney Ultrasound Contour Detection Using Markov Random Fields

M. Martín, C. Alberola
397

Level Set Based Integration of Segmentation and Computational Fluid Dynamics for Flow Correction in Phase Contrast Angiography

M. Watanabe, R. Kikinis, C.-F. Westin
405

Comparative Exudate Classification Using Support Vector Machines and Neural Networks

A. Osareh, M. Mirmehdi, B. Thomas, R. Markham
413

A Statistical Shape Model for the Liver

H. Lamecker, T. Lange, M. Seebass
421

Statistical 2D and 3D Shape Analysis Using Non-Euclidean Metrics

R. Larsen, K.B. Hilger, M.C. Wrobel
428

Kernel Fisher for Shape Based Classification in Epilepsy

N. Vohra, B.C. Venuri, A. Rangarajan, R.L. Gilmore, S.N. Roper, C.M. Leonard
436

A Noise Robust Statistical Texture Model

K.B. Hilger, M.B. Stegmann, R. Larsen
444

A Combined Statistical and Biomechanical Model for Estimation of Intra-operative Prostate Deformation

A. Mohamed, C. Davatzikos, R. Taylor
452

Registration – 2D/D Fusion

“Gold Standard” 2D/3D Registration of X-Ray to CT and MR Images

D. Tomazevič, B. Likar, F. Pernuš
461
A Novel Image Similarity Measure for Registration of 3-D MR Images X-Ray Projection Images
T. Rohlfing, C.R. Maurer Jr. 469

Registration of Preoperative CTA and Intraoperative Fluoroscopic Images for Assisting Aortic Stent Grafting
H. Imamura, N. Ida, N. Sugimoto, S. Eiho, S. Urayama,
K. Ueno, K. Inoue 477

Preoperative Analysis of Optimal Imaging Orientation in Fluoroscopy for Voxel-Based 2-D/3-D Registration
Y. Nakajima, Y. Tamura, Y. Sato, T. Tashiro, N. Sugano,
K. Yonenobu, H. Yoshikawa, T. Ochi, S. Tamura 485

Registration – Similarity Measures

A New Similarity Measure for Nonrigid Volume Registration Using Known Joint Distribution of Target Tissue:
Application to Dynamic CT Data of the Liver
J. Masumoto, Y. Sato, M. Hori, T. Murakami, T. Johkoh,
H. Nakamura, S. Tamura 493

2D-3D Intensity Based Registration of DSA and MRA –
A Comparison of Similarity Measures
J.H. Hipwell, G.P. Penney, T.C. Cox, J.V. Byrne, D.J. Hawkes

Model Based Spatial and Temporal Similarity Measures between Series of Functional Magnetic Resonance Images
F. Kherif, G. Flandin, P. Ciuciu, H. Benali, O. Simon, J.-B. Poline

A Comparison of 2D-3D Intensity-Based Registration and Feature-Based Registration for Neurointerventions
R.A. McLaughlin, J. Hipwell, D.J. Hawkes, J.A. Noble, J.V. Byrne,
T. Cox ... 517

Multi-modal Image Registration by Minimising Kullback-Leibler Distance
A.C.S. Chung, W.M. Wells III, A. Norbash, W.E.L. Grimson

Cortical Surface Registration Using Texture Mapped Point Clouds and Mutual Information

Non-rigid Registration

A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information
E. D’Agostino, F. Maes, D. Vandermeulen, P. Suetens ... 541
Non-rigid Registration with Use of Hardware-Based 3D Bézier Functions . . 549
 G. Soza, M. Bauer, P. Hastreiter, C. Nimsky, G. Greiner

Brownian Warps: A Least Committed Prior for Non-rigid Registration . . 557
 M. Nielsen, P. Johansen, A.D. Jackson, B. Lautrup

Using Points and Surfaces to Improve Voxel-Based Non-rigid Registration . 565
 T. Hartkens, D.L.G. Hill, A.D. Castellano-Smith, D.J. Hawkes,
 C.R. Maurer Jr., A.J. Martin, W.A. Hall, H. Liu, C.L. Truwit

Intra-patient Prone to Supine Colon Registration
for Synchronized Virtual Colonoscopy .. 573
 H. Ji, R. Kikinis, C.-F. Westin

Nonrigid Registration Using Regularized Matching Weighted
by Local Structure ... 581
 E. Suárez, C.-F. Westin, E. Rovaris, J. Ruiz-Alzola

Inter-subject Registration of Functional and Anatomical Data
Using SPM... 590
 P. Hellier, J. Ashburner, I. Corouge, C. Barillot, K.J. Friston

Visualization

Evaluation of Image Quality in Medical Volume Visualization:
The State of the Art .. 598
 A. Pommert, K.H. Höhne

Shear-Warp Volume Rendering Algorithms Using Linear Level Octree
for PC-Based Medical Simulation ... 606

Line Integral Convolution for Visualization
of Fiber Tract Maps from DTI ... 615

On the Accuracy of Isosurfaces in Tomographic Volume Visualization . . 623
 A. Pommert, U. Tiede, K.H. Höhne

A Method for Detecting Undisplayed Regions in Virtual Colonoscopy Its
Application to Quantitative Evaluation of Fly-Through Methods 631
 Y. Hayashi, K. Mori, J. Hasegawa, Y. Suenaga, J. Toriwaki

Novel Imaging Techniques

3D Respiratory Motion Compensation by Template Propagation 639
 P. Rösch, T. Netsch, M. Quist, J. Weese
An Efficient Observer Model for Assessing Signal Detection Performance of Lossy-Compressed Images 647
 B.M. Schmanske, M.H. Loew

Statistical Modeling of Pairs of Sulci in the Context of Neuroimaging Probabilistic Atlas 655
 I. Corouge, C. Barillot

Two-Stage Alignment of fMRI Time Series Using the Experiment Profile to Discard Activation-Related Bias 663
 L. Freire, J.-F. Mangin

Real-Time DRR Generation Using Cylindrical Harmonics 671
 F. Wang, T.E. Davis, B.C. Vemuri

Strengthening the Potential of Magnetic Resonance Cholangiopancreatography (MRCP) by a Combination of High-Resolution Data Acquisition and Omni-directional Stereoscopic Viewing 679
 T. Yamagishi, K.H. Höhne, T. Saito, K. Abe, J. Ishida, R. Nishimura, T. Kudo

Author Index .. 687