Volume Editors

Vassil N. Alexandrov
University of Reading
School of Computer Science, Cybernetics and Electronic Engineering
Whiteknights, P.O. Box 225, Reading RG6 6AY, UK
E-mail: V.N.Alexandrov@rdg.ac.uk

Jack J. Dongarra
University of Tennessee
Innovative Computing Lab, Computer Science Department
1122 Volunteer Blvd, Knoxville, TN 37996-3450, USA
E-mail: dongarra@cs.utk.edu

Benjoe A. Juliano
René S. Renner
Computer Science Department, California State University
Chico, CA 95929-0410, USA
E-mail: {Juliano/renner}@ecst.csuchico.edu

C. J. Kenneth Tan
The Queen’s University of Belfast
School of Computer Science
Belfast BT7 1NN, Northern Ireland, UK
E-mail: cjtan@acm.org

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Computational science : international conference ; proceedings / ICCS
... (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer
Pt. 1. - (2001)
(Lecture notes in computer science ; Vol. 2073)
ISBN 3-540-42232-3

ISSN 0302-9743

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author
Printed on acid-free paper SPIN 10781763 06/3142 5 4 3 2 1 0
Preface

Computational Science is becoming a vital part of many scientific investigations, affecting researchers and practitioners in areas ranging from aerospace and automotive, to chemistry, electronics, geosciences, to mathematics, and physics. Due to the sheer size of many challenges in computational science, the use of high performance computing, parallel processing, and sophisticated algorithms, is inevitable.

These two volumes (Lecture Notes in Computer Science volumes 2073 and 2074) contain the proceedings of the 2001 International Conference on Computational Science (ICCS 2001), held in San Francisco, California, USA, May 27–31, 2001. These two volumes consist of more than 230 contributed and invited papers presented at the meeting. The papers presented here reflect the aims of the program committee to bring together researchers and scientists from mathematics and computer science as basic computing disciplines, researchers from various application areas who are pioneering advanced applications of computational methods to sciences such as physics, chemistry, life sciences, and engineering, arts and humanitarian fields, along with software developers and vendors, to discuss problems and solutions in the area, to identify new issues, and to shape future directions for research, as well as to help industrial users apply various advanced computational techniques. The aim was also to outline a variety of large-scale problems requiring interdisciplinary approaches and vast computational efforts, and to promote interdisciplinary collaboration.

The conference was organized by the Department of Computer Science at California State University at Chico, the School of Computer Science at The Queen’s University of Belfast, the High Performance Computing and Communication group from the Department of Computer Science, The University of Reading, and the Innovative Computing Laboratory at the University of Tennessee. This is the first such meeting and we expect a series of annual conferences in Computational Science.

The conference included 4 tutorials, 12 invited talks, and over 230 contributed oral presentations. The 4 tutorials were “Cluster Computing” given by Stephen L. Scott, “Linear Algebra with Recursive Algorithms (LAWRA)” given by Jerzy Waśniewski, “Monte Carlo Numerical Methods” given by Vassil Alexandrov and Kenneth Tan, and “Problem Solving Environments” given by David Walker. The constitution of the interesting program was due to the invaluable suggestions of the members of the ICCS 2001 Program Committee. Each contributed paper was refereed by at least two referees. We are deeply indebted to the members of the program committee and all those in the community who helped us form a successful program. Thanks also to Charmaine Birchmore, James Pascoe, Robin Wolff, and Oliver Otto whose help was invaluable.

We would like to thank our sponsors and partner organizations, for their support, which went well beyond our expectations. The conference was sponsored by Sun Microsystems (USA), IBM (UK), FECIT (Fujitsu European Center for Information Technology) Ltd. (UK), American Mathematical Society (USA), Pacific Institute for the Mathematical Sciences (Canada), Springer-Verlag GmbH,
California State University at Chico (USA), The Queen's University of Belfast (UK), and The University of Reading (UK).

ICCS 2001 would not have been possible without the enthusiastic support of our sponsors and our colleagues from Oak Ridge National Laboratory, University of Tennessee and California State University at Chico. Warm thanks to James Pascoe, Robin Wolff, Oliver Otto, and Nia Alexandrov for their invaluable work in editing the proceedings; to Charmaine Birchmore for dealing with the financial side of the conference; and to Harold Esche and Rod Blais for providing us with a Web site at the University of Calgary. Finally, we would like to express our gratitude to our colleagues from the School of Computer Science at The Queen's University of Belfast and the Department of Computer Science at The University of Reading, who assisted in the organization of ICCS 2001.

May 2001

Vassil N. Alexandrov
Jack J. Dongarra
Benjoe A. Juliano
Reneé S. Renner
C. J. Kenneth Tan
Organization

The 2001 International Conference on Computational Science was organized jointly by The University of Reading (Department of Computer Science), The University of Tennessee (Department of Computer Science), and The Queen’s University of Belfast (School of Computer Science).

Organizing Committee

Conference Chairs: Vassil N. Alexandrov, Department of Computer Science, The University of Reading
Jack J. Dongarra, Department of Computer Science, University of Tennessee
C. J. Kenneth Tan, School of Computer Science, The Queen’s University of Belfast

Local Organizing Chairs: Benjoe A. Juliano (California State University at Chico, USA)
Reneé S. Renner (California State University at Chico, USA)

Local Organizing Committee

Larry Davis (Department of Defense HPC Modernization Program, USA)
Benjoe A. Juliano (California State University at Chico, USA)
Cathy McDonald (Department of Defense HPC Modernization Program, USA)
Reneé S. Renner (California State University at Chico, USA)
C. J. Kenneth Tan (The Queen’s University of Belfast, UK)
Valerie B. Thomas (Department of Defense HPC Modernization Program, USA)

Steering Committee

Vassil N. Alexandrov (The University of Reading, UK)
Marian Bubak (AGH, Poland)
Jack J. Dongarra (Oak Ridge National Laboratory, USA)
C. J. Kenneth Tan (The Queen’s University of Belfast, UK)
Jerzy Waśniewski (Danish Computing Center for Research and Education, DK)

Special Events Committee

Vassil N. Alexandrov (The University of Reading, UK)
J. A. Rod Blais (University of Calgary, Canada)
Peter M. A. Sloot (University of Amsterdam, The Netherlands)
Marina L. Gavrilova (University of Calgary, Canada)
Program Committee

Vassil N. Alexandrov (The University of Reading, UK)
Hamid Arabnia (University of Georgia, USA)
J. A. Rod Blais (University of Calgary, Canada)
Alexander V. Bogdanov (IHPCDB)
Marian Bubak (AGH, Poland)
Toni Cortes (Universidad de Catalunya, Barcelona, Spain)
Brian J. d’Auriol (University of Texas at El Paso, USA)
Larry Davis (Department of Defense HPC Modernization Program, USA)
Ivan T. Dimov (Bulgarian Academy of Science, Bulgaria)
Jack J. Dongarra (Oak Ridge National Laboratory, USA)
Harold Esche (University of Calgary, Canada)
Marina L. Gavriloja (University of Calgary, Canada)
Ken Hawick (University of Wales, Bangor, UK)
Bob Hertzberger (University of Amsterdam, The Netherlands)
Michael J. Hobbs (HP Labs, Palo Alto, USA)
Caroline Isaac (IBM UK, UK)
Heath James (University of Adelaide, Australia)
Benjoe A. Juliano (California State University at Chico, USA)
Aneta Karaivanova (Florida State University, USA)
Antonio Laganà (University of Perugia, Italy)
Christiane Lemieux (University of Calgary, Canada)
Jiri Nedoma (Academy of Sciences of the Czech Republic, Czech Republic)
Cathy McDonald (Department of Defense HPC Modernization Program, USA)
Graham M. Megson (The University of Reading, UK)
Peter Parsons (Sun Microsystems, UK)
James S. Pascoe (The University of Reading, UK)
William R. Pulleyblank (IBM T. J. Watson Research Center, USA)
Andrew Rau-Chaplin (Dalhousie University, Canada)
Renée S. Renner (California State University at Chico, USA)
Paul Roe (Queensland University of Technology, Australia)
Laura A. Salter (University of New Mexico, USA)
Peter M. A. Sloot (University of Amsterdam, The Netherlands)
David Snelling (Fujitsu European Center for Information Technology, UK)
Lois Steenman-Clarke (The University of Reading, UK)
C. J. Kennith Tan (The Queen’s University of Belfast, UK)
Philip Tannenbaum (NEC/HNSX, USA)
Valerie B. Thomas (Department of Defense HPC Modernization Program, USA)
Koichi Wada (University of Tsukuba, Japan)
Jerzy Wasniewski (Danish Computing Center for Research and Education, DK)
Roy Williams (California Institute of Technology, USA)
Zahari Zlatev (Danish Environmental Research Institute, Denmark)
Elena Zudilova (Corning Scientific Center, Russia)
Sponsoring Organizations

American Mathematical Society, USA
Fujitsu European Center for Information Technology, UK
International Business Machines, USA
Pacific Institute for the Mathematical Sciences, Canada
Springer-Verlag, Germany
Sun Microsystems, USA
California State University at Chico, USA
The Queen’s University of Belfast, UK
The University of Reading, UK
Table of Contents, Part I

Invited Speakers

Exploiting OpenMP to Provide Scalable SMP BLAS and LAPACK Routines
 Cliff Addison. .. 3

Scientific Discovery through Advanced Computing
 Carl Edward Oliver. ... 4

Quantification of Uncertainty for Numerical Simulations with Confidence Intervals
 James Glimm. .. 5

Large-Scale Simulation and Visualization in Medicine: Applications to Cardiology, Neuroscience, and Medical Imaging
 Christopher Johnson. ... 6

Can Parallel Programming Be Made Easy for Scientists?
 Péter Kacsuk. ... 7

Software Support for High Performance Problem-Solving on Computational Grids
 Ken Kennedy. .. 8

Lattice Rules and Randomized Quasi-Monte Carlo
 Pierre L’Ecuyer. ... 9

Blue Gene: A Massively Parallel System
 José E. Moreira. ... 10

Dynamic Grid Computing
 Edward Siedel. .. 11

Robust Geometric Computation Based on Topological Consistency
 Kokichi Sugihara. .. 12

Metacomputing with the Harness and IceT Systems
 Vaidy Sunderam. ... 27

Computational Biology: IT Challenges and Opportunities
 Stefan Unger, Andrew Komornicki. 28

Architecture-Specific Automatic Performance Tuning

A Data Broker for Distributed Computing Environments
 L.A. Drummond, J. Demmel, C.R. Mechoso, H. Robinson,
 K. Sklouver, J.A. Spahr. 31

Towards an Accurate Model for Collective Communications
 Sathish Vadhiyar, Graham E. Fagg, and Jack J. Dongarra. 41

A Family of High-Performance Matrix Multiplication Algorithms
 John A. Gunnels, Greg M. Henry, Robert A. van de Geijn. 51

Performance Evaluation of Heuristics for Scheduling Pipelined Multiprocessor Tasks
 M. Fikret Ercan, Ceyda Oguz, Yu-Fai Fung. 61

Automatic Performance Tuning in the UHFFT Library
 Dragan Mirković, S. Lennart Johnsson. 71
A Modal Model of Memory
Nick Mitchell, Larry Carter, Jeanne Ferrante.

Fast Automatic Generation of DSP Algorithms
Markus Püschel, Bryan Singer, Manuela Veloso, José M.F. Moura.

Cache-Efficient Multigrid Algorithms
Sriram Sellappa, Siddhartha Chatterjee.

Statistical Models for Automatic Performance Tuning
Richard Vuduc, James W. Demmel, Jeff Bilmes.

Optimizing Sparse Matrix Computations for Register Reuse in SPARSITY
Eun-Jin Im, Katherine Yelick.

Rescheduling for Locality in Sparse Matrix Computations
Michelle Mills Strout, Larry Carter, Jeanne Ferrante.

Climate Modeling
The DOE Parallel Climate Model (PCM): The Computational Highway and Backroads
Thomas Bettge, Anthony Craig, Rodney James, Vince Wayland, Gary Strand.

Conceptualizing a Collaborative Problem-Solving Environment for Regional Climate Modeling and Assessment of Climate Impacts
George Chin Jr., L. Ruby Leung, Karen Schuchardt, Debbie Gracio.

Computational Design and Performance of the Fast Ocean Atmosphere Model, Version 1
Robert Jacob, Chad Schafer, Ian Foster, Michael Tobis, John Anderson.

The Model Coupling Toolkit
J. Walter Larson, Robert L. Jacob, Ian T. Foster, Jing Guo.

Parallelization of a Subgrid Orographic Precipitation Scheme in an MM5-based Regional Climate Model
L. Ruby Leung, John G. Michalakes, Xindi Bian.

Resolution Dependence in Modeling Extreme Weather Events
John Taylor, Jay Larson.

Visualizing High-Resolution Climate Data
Sheri A. Voelz, John Taylor.

Global Computing – Internals and Usage
Improving Java Server Performance with Interruptlets
David Craig, Steven Carroll, Fabian Breg, Dimitrios S. Nikolopoulos, Constantine Polychronopoulos.

Protocols and Software for Exploiting Myrinet Clusters
P. Geoffray, C. Pham, L. Pryllé, B. Tourancheau, R. Westrelin.

Cluster Configuration Aided by Simulation
Dieter F. Kvasnicka, Helmut Hlavacs, Christoph W. Ueberhuber.
Application Monitoring in the Grid with GRM and PROVE
Zoltán Balaton, Péter Kacsuk, Norbert Podhorszki. 253

Extension of Macrostep Debugging Methodology Towards
Metacomputing Applications
Robert Lovas, Vaidy S. Sunderam. 263

Capacity and Capability Computing Using Legion
Anand Natrajan, Marty A. Humphrey, Andrew S. Grimshaw. . . 273

Component Object Based Single System Image Middleware for
Metacomputer Implementation of Genetic Programming on
Clusters
Ivan Tanev, Takashi Uozomi, Dauren Akhmetov. 284

The Prioritized and Distributed Synchronization in Distributed Groups
Michel Trehel, Ahmed Housni. 294

Collaborative Computing
On Group Communication Systems: Insight, a Primer and a Snapshot
P.A. Gray, J.S. Pascoe. 307

Overview of the InterGroup Protocols
K. Berket, D.A. Agarwal, P.M. Melliar-Smith, L.E. Moser. . . . 316

Introducing Fault-Tolerant Group Membership into the Collaborative
Computing Transport Layer
R.J. Loader, J.S. Pascoe, V.S. Sunderam. 326

A Modular Collaborative Parallel CFD Workbench
Kwai L. Wong, A. Jerry Baker. 336

Distributed Name Service in Harness
Tomasz Tynakowski, Vaidy S. Sunderam, Mauro Migliardi. . . . 345

Fault Tolerant MPI for the Harness Meta-computing System
Graham E. Fagg, Antonin Bukovsky, Jack J. Dongarra. 355

A Harness Control Application for Hand-Held Devices
Tomasz Tynakowski, Vaidy S. Sunderam, Mauro Migliardi. . . . 367

Flexible Class Loader Framework: Sharing Java Resources in
Harness System
Dawid Kurzyniec, Vaidy S. Sunderam. 375

Mobile Wide Area Wireless Fault-Tolerance
J.S. Pascoe, G. Sibley, V.S. Sunderam, R.J. Loader. 385

Tools for Collaboration in Metropolitan Wireless Networks
G. Sibley, V.S. Sunderam. 395

A Repository System with Secure File Access for Collaborative
Environments
Paul A. Gray, Srividya Chandramohan, Vaidy S. Sunderam. . . 404

Authentication Service Model Supporting Multiple Domains in
Distributed Computing
Kyung-Ah Chang, Byung-Rae Lee, Tai-Yun Kim. 413

Performance and Stability Analysis of a Message Oriented Reliable
Multicast for Distributed Virtual Environments in Java
Gunter Stuer, Jan Broeckhove, Frans Arickx 423
A Secure and Efficient Key Escrow Protocol for Mobile Communications
Byung-Rae Lee, Kyung-Ah Chang, Tai-Yun Kim. 433

Complex Physical System Simulation
High-Performance Algorithms for Quantum Systems Evolution
Alexander V. Bogdanov, Ashot S. Gevorkyan, Elena N. Stankova. 447
Complex Situations Simulation when Testing Intelligence System Knowledge Base
Yu. I. Nechaev, A.B. Degtyarev, A.V. Boukhanovsky. 453
Peculiarities of Computer Simulation and Statistical Representation of Time-Spatial Metocean Fields
A.V. Boukhanovsky, A.B. Degtyarev, V.A. Rozhkov. 463
Numerical Investigation of Quantum Chaos in the Problem ofMultichannel Scattering in Three Body System
A.V. Bogdanov, A.S. Gevorkyan, A.A. Udalov. 473
Distributed Simulation of Amorphous Hydrogenated Silicon Films: Numerical Experiments on a Linux Based Computing Environment
Yu.E. Gorbachev, M.A. Zatevakhin, V.V. Krzhizhanovskaya, A.A. Ignatiev, V. Kh. Protopopov, N.V. Sokolova, A.B. Witenberg. 483
Performance Prediction for Parallel Local Weather Forecast Programs
Wolfgang Joppich, Hermann Mzerendorff. 492
The NORMA Language Application to Solution of Strong Nonequilibrium Transfer Processes Problem with Condensation of Mixtures on the Multiprocessors System
A.N. Andrianov, K.N. Efimkin, V. Yu. Levashov, I.N. Shishkova. 502
Adaptive High-Performance Method for Numerical Simulation of Unsteady Complex Flows with Number of Strong and Weak Discontinuities
Alexander Vinogradov, Vladimir Volkov, Vladimir Gidaspow, Alexander Muslaev, Peter Rozovski. 511
Cellular Automata as a Mesoscopic Approach to Model and Simulate Complex Systems
P.M.A. Sloot, A.G. Hoekstra. 518

Computational Chemistry
Ab-Initio Kinetics of Heterogeneous Catalysis: NO +N+ O/Rh(111)
A.P.J. Jansen, C.G.M. Hermse, F. Frechard, J.J. Lukkien. 531
Interpolating Wavelets in Kohn-Sham Electronic Structure Calculations
A.J. Markwoort, R. Pino, P.A.J. Hilbers. 541
Simulations of Surfactant-Enhanced Spreading
Sean McNamara, Joel Koplik, Jayanth R. Banavar. 551
Supporting Car-Parrinello Molecular Dynamics Application with UNICORE
Valentina Huber. 560

Parallel Methods in Time Dependent Approaches to Reactive Scattering Calculations
Valentina Piemarini, Leonardo Pacifici, Stefano Crocchianti, Antonio Laganà, Giuseppina D’Agosto, Sergio Tasso. 567

Computational Finance
Construction of Multinomial Lattice Random Walks for Optimal Hedges
Yumi Yamada, James A. Primbs. 579
On Parallel Pseudo-random Number Generation
Chih Jeng Kenneth Tan. 589
A General Framework for Trinomial Trees
Ali Lari-Lavassani, Bradley D. Tifenbach. 597
On the Use of Quasi-Monte Carlo Methods in Computational Finance
Christiane Lemieux, Pierre L’Ecuyer. 607

Computational Geometry and Applications
An Efficient Algorithm to Calculate the Minkowski Sum of Convex 3D Polyhedra
Henk Bekker, Jos B.T.M. Roerdink. 619
REGTET: A Program for Computing Regular Tetrahedralizations
Javier Bernal. 629
Fast Maintenance of Rectilinear Centers
Sergei Bespamyatnikh, Michael Segal. 633
Exploring an Unknown Polygonal Environment with Bounded Visibility
Amitava Bhattacharya, Subir Kumar Ghosh, Sudeep Sarkar. 640
Parallel Optimal Weighted Links
Ovidiu Daescu. 649
Robustness Issues in Surface Reconstruction
Tamal K. Dey, Joachim Giesen, Wulue Zhao. 658
On a Nearest-Neighbor Problem in Minkowski and Power Metrics
M.L. Gavrilova. 663
On Dynamic Generalized Voronoi Diagrams in the Euclidean Metric
M.L. Gavrilova, J. Rokne. 673
Computing Optimal Hatching Directions in Layered Manufacturing
Man Chung Hon, Ravi Janardan, Jörg Schwerdt, Michiel Smid. 683
Discrete Local Fairing of B-spline Surfaces
Seok-Yong Hong, Chung-Seong Hong, Hyun-Chan Lee, Koochyun Park. 693
Computational Methods for Geometric Processing Applications to Industry
Andrés Iglesias, Akemi Gálvez, Jaime Puig-Pey. 698
Graph Voronoi Regions for Interfacing Planar Graphs
 Thomas Kämpke, Matthias Strobel. 708
Robust and Fast Algorithm for a Circle Set Voronoi Diagram in a Plane
 Deok-Soo Kim, Donguk Kim, Kokichi Sugihara, Joonghyun Ryu. 718
Apollonius Tenth Problem as a Point Location Problem
 Deok-Soo Kim, Donguk Kim, Kokichi Sugihara, Joonghyun Ryu. 728
Crystal Voronoi Diagram and Its Applications to Collision-Free Paths
 Kei Kobayashi, Kokichi Sugihara. 738
The Voronoi-Delaunay Approach for Modeling the Packing of Balls in a Cylindrical Container
 V.A. Luchnikov, N.N. Medvedev, M.L. Gavrilova. 748
Multiply Guarded Guards in Orthogonal Art Galleries
 T.S. Michael, Val Pinciu. 753
Reachability on a Region Bounded by Two Attached Squares
 Ali Mohades, Mohamadreza Razzazi. 763
Illuminating Polygons with Vertex π-floodlights
 Csaba D. Tóth. .. 772

Computational Methods
Performance Tradeoffs in Multi-tier Formulation of a Finite Difference Method
 Scott B. Baden, Daniel Shalit. 785
On the Use of a Differentiated Finite Element Package for Sensitivity Analysis
 Christian H. Bischof, H. Martin Bücker, Bruno Lang,
 Arno Rasch, Jakob W. Risch. 795
Parallel Factorizations with Algorithmic Blocking
 Jaeyoung Choi. ... 802
Bayesian Parameter Estimation: A Monte Carlo Approach
 Ray Gallagher, Tony Doran. 812
Recent Progress in General Sparse Direct Solvers
 Anshul Gupta. ... 823
On Efficient Application of Implicit Runge-Kutta Methods to Large-Scale Systems of Index 1 Differential-Algebraic Equations
 Gennady Yu. Kulikov, Alexandra A. Korneva. 832
On the Efficiency of Nearest Neighbor Searching with Data Clustered in Lower Dimensions
 Songrit Maneewongvatana, David M. Mount. 842
A Spectral Element Method for Oldroyd-B Fluid in a Contraction Channel
 Sha Meng, Xin Kai Li, Gwynne Evans. 852
SSE Based Parallel Solution for Power Systems Network Equations
 Y.F. Fung, M. Fikret Ercan, T.K. Ho, W.L. Cheung. 862
Implementation of Symmetric Nonstationary Phase-Shift Wavefield Extrapolator on an Alpha Cluster
Yanpeng Mi, Gary F. Margrave. 874

Generalized High-Level Synthesis of Wavelet-Based Digital Systems via Nonlinear I/O Data Space Transformations
Dongming Peng, Mi Lu. 884

Solvable Map Method for Integrating Nonlinear Hamiltonian Systems
Govindan Rangarajan, Minita Sachidanand. 894

A Parallel ADI Method for a Nonlinear Equation Describing Gravitational Flow of Ground Water
I. V. Schevtschenko. 904

The Effect of the Cusp on the Rate of Convergence of the Rayleigh-Ritz Method
Ioana Sirbu, Harry F. King. 911

The AGEB Algorithm for Solving the Heat Equation in Three Space Dimensions and Its Parallelization Using PVM
Mohd Salleh Sahimi, Norma Alias, Elankovan Sundararajan. ... 918

A Pollution Adaptive Mesh Generation Algorithm in r-h Version of the Finite Element Method
Soo Bum Pyun, Hyeong Seon Yoo. 928

An Information Model for the Representation of Multiple Biological Classifications
Neville Yoon, John Rose. 937

A Precise Integration Algorithm for Matrix Riccati Differential Equations
Wan-Xie Zhong, Jianping Zhu. 947

Computational Models of Natural Language Arguments
GEA: A Complete, Modular System for Generating Evaluative Arguments
Guiseppe Caremini. 959

Argumentation in Explanations to Logical Problems
Armin Fiedler, Helmut Horacek. 969

Analysis of the Argumentative Effect of Evaluative Semantics in Natural Language
Serge V. Gavenko. 979

Getting Good Value: Facts, Values and Goals in Computational Linguistics
Michael A. Gilbert. 989

Computational Models of Natural Language Argument
Chris Reed, Floriana Grasso. 999

An Empirical Study of Multimedia Argumentation
Nancy Green. .. 1009

Exploiting Uncertainty and Incomplete Knowledge in Deceptive Argumentation
Valeria Carofiglio, Fiorella de Rosis. 1019
Computational Physics in the Undergraduate Curriculum

Integrating Computational Science into the Physics Curriculum

Harvey Gould, Jan Tobochnik.

Musical Acoustics and Computational Science

N. Giordano, J. Roberts.

Developing Components and Curricula for a Research-Rich Undergraduate Degree in Computational Physics

Rubin H. Landau.

Physlets: Java Tools for a Web-Based Physics Curriculum

Wolfgang Christian, Mario Belloni, Melissa Dancy.

Computation in Undergraduate Physics: The Lawrence Approach

David M. Cook.

Computational Science Applications and Case Studies

Recent Developments of a Coupled CFD/CSD Methodology

Joseph D. Baum, Hong Luo, Eric L. Mestreau, Dmitri Sharov, Rainald Löhner, Daniele Pelessone, Charles Charman.

Towards a Coupled Environmental Prediction System

Julie L. McClean, Wieslaw Maslowski, Mathew E. Maltrud.

New Materials Design

Jerry Boatz, Mark S. Gordon, Gregory Voth, Sharon Hammes-Shiffer, Ruth Pachter.

Parallelization of an Adaptive Mesh Refinement Method for Low Mach Number Combustion

Charles A. Rendleman, Vince E. Beckner, Mike J. Lijewski.

Combustion Dynamics of Swirling Turbulent Flames

Suresh Menon, Vaidyanathan Sankaran, Christopher Stone.

Parallel CFD Computing Using Shared Memory OpenMP

Hong Hu, Edward L. Turner.

Plasma Modeling of Ignition for Combustion Simulations

Osman Yaşar.

Computational Science Education: Standards, Learning Outcomes and Assessment Techniques

Computational Science Education: Standards, Learning Outcomes and Assessment

Osman Yaşar.

Learning Computational Methods for Partial Differential Equations from the Web

André Jaun, Johan Hedin, Thomas Johnson, Michael Christie, Lars-Erik Jonsson, Mikael Persson, Laurent Villard.

Computational Engineering and Science Program at the University of Utah

Carleton DeTar, Aaron L. Fogelson, Christopher R. Johnson, Christopher A. Sikorski.
High Performance and Parallel Computing in Manufacturing and Testing Environments
Influences on the Solution Process for Large, Numeric-Intensive Automotive Simulations
 Myron Ginsberg. .. 1189
Salable Large Scale Process Modeling and Simulations in Liquid Composite Molding
 Ram Mohan, Dale Shires, Andrew Mark. 1199
An Object-Oriented Software Framework for Execution of Real-Time, Parallel Algorithms
 J. Brent Spears, Brett N. Gossage. 1209
A Multiagent Architecture Addresses the Complexity of Industry Process Re-engineering
 John K. Debenham. ... 1219
Diagnosis Algorithms for a Symbolically Modeled Manufacturing Process
 N. Rakoto-Ravalontsalama. 1228
Time-Accurate Turbine Engine Simulation in a Parallel Computing Environment: Part II - Software Alpha Test
 M.A. Chappell, B.K. Feather. 1237

Monte Carlo Numerical Methods
Finding Steady State of Safety Systems Using the Monte Carlo Method
 Ray Gallagher. .. 1253
Parallel High-Dimensional Integration: Quasi Monte-Carlo versus Adaptive Cubature Rules
 Rudolf Schürer. .. 1262
Path Integral Monte Carlo Simulations and Analytical Approximations for High-Temperature Plasmas
 V. Filinov, M. Bonitz, D. Kremp, W.-D. Kraeft, V. Fortov . 1272
A Feynman-Kac Path-Integral Implementation for Poisson’s Equation
 Chi-Ok Hwang, Michael Mascagni. 1282
Relaxed Monte Carlo Linear Solver
 Chih Jeng Kenneth Tan, Vassil Alexandrov. 1289

Author Index .. 1299
Table of Contents, Part II

Digital Imaging Applications

- **Densification of Digital Terrain Elevations Using Shape from Shading with Single Satellite Imagery**
 Mohammad A. Rajabi, J.A. Rod Blais
 3

- **PC-Based System for Calibration, Reconstruction, Processing, and Visualization of 3D Ultrasound Data Based on a Magnetic-Field Position and Orientation Sensing System**
 Emad Boctor, A. Saad, Dar-Jen Chang, K. Kamel, A.M. Youssef
 13

- **Automatic Real-Time XRII Local Distortion Correction Method for Digital Linear Tomography**
 Christian Forlani, Giancarlo Ferrigno
 23

- **Meeting the Computational Demands of Nuclear Medical Imaging Using Commodity Clusters**
 Wolfgang Karl, Martin Schulz, Martin Völk, Sibylle Ziegler
 27

- **An Image Registration Algorithm Based on Cylindrical Prototype Model**
 Joong-Jae Lee, Gye-Young Kim, Hyung-II Choi
 37

- **An Area-Based Stereo Matching Using Adaptive Search Range and Window Size**
 Han-Suh Koo, Chang-Sung Jeong
 44

Environmental Modeling

- **Methods of Sensitivity Theory and Inverse Modeling for Estimation of Source Term and Risk/Vulnerability Areas**
 Vladimir Penenko, Alexander Baklanov
 57

- **The Simulation of Photochemical Smog Episodes in Hungary and Central Europe Using Adaptive Gridding Models**
 István Lagzi, Alison S. Tomlin, Tamás Turányi, László Haszpra, Róbert Mészáros, Martin Berzins
 67

- **Numerical Solution of the Aerosol Condensation/Evaporation Equation**
 Khoi Nguyen, Donald Dabdub
 77

High Performance Computational Tools and Environments

- **Pattern Search Methods for Use-Provided Points**
 Pedro Alberto, Fernando Nogueira, Humberto Rocha, Luíz N. Vicente
 95

- **In-situ Bioremediation: Advantages of Parallel Computing and Graphical Investigating Techniques**
 M.C. Baracca, G. Clai, P. Ornelli
 99
Adaptive Load Balancing for MPI Programs 108
Milind Bhandarkar, L.V. Kalé, Eric de Sturler, Jay Hoeflinger

Performance and Irregular Behavior of Adaptive Task Partitioning 118
Elise de Doncker, Rodger Zanny, Karlis Kaugars, Laurentiu Cucos

Optimizing Register Spills for Eager Functional Languages 128
S. Mishra, K. Sikdar, M. Satpathy

A Protocol for Multi-threaded Processes with Choice in π-Calculus 138
Kazunori Iwata, Shingo Itabashi, Naohiro Ishi

Mapping Parallel Programs onto Distributed Computer Systems with Faulty Elements .. 148
Mikhail S. Tarkov, Youngsong Mun, Jaeyoung Choi, Hyung-Il Choi

Enabling Interoperation of High Performance, Scientific Computing Applications: Modeling Scientific Data with the Sets and Fields (SAF) Modeling System .. 158
Mark C. Miller, James F. Reus, Robb P. Matzke, William J. Arrighi, Larry A. Schoof, Ray T. Hitt, Peter K. Espen

Intelligent Systems Design and Applications
ALEC: An Adaptive Learning Framework for Optimizing Artificial Neural Networks .. 171
Ajith Abraham, Baikunth Nath

Solving Nonlinear Differential Equations by a Neural Network Method 181
Lucie P. Aarts, Peter Van der Veer

Fuzzy Object Blending in 2D .. 190
Ahmet Çinar, Ahmet Arslan

An Adaptive Neuro-Fuzzy Approach for Modeling and Control of Nonlinear Systems ... 198
Otman M. Ahtiwash, Mohd Zaki Abdulmuid

The Match Fit Algorithm - A Testbed for Computational Motivation of Attention .. 208
Joseph G. Billock, Demetri Psaltis, Christof Koch

Automatic Implementation and Simulation of Qualitative Cognitive Maps . 217
João Paulo Carvalho, José Alberto Tomé

Inclusion-Based Approximate Reasoning 221
Chris Cornelis, Etienne E. Kerre

Attractor Density Models with Application to Analyzing the Stability of Biological Neural Networks ... 231
Christian Storm, Walter J. Freeman

MARS: Still an Alien Planet in Soft Computing? 235
Ajith Abraham, Dan Steinberg
Table of Contents

Data Reduction Based on Spatial Partitioning .. 245
Gongde Guo, Hui Wang, David Bell, Qingxiang Wu

Alternate Methods in Reservoir Simulation 253
Guadalupe I. Janoski, Andrew H. Sung

Intuitionistic Fuzzy Sets in Intelligent Data Analysis for Medical Diagnosis 263
Eulalia Szmidt, Janusz Kacprzyk

Design of a Fuzzy Controller Using a Genetic Algorithm for Stator Flux Estimation .. 272
Mehmet Karakose, Mehmet Kaya, Erhan Akin

Object Based Image Ranking Using Neural Networks 281
Gour C. Karmakar, Syed M. Rahman, Lawrence S. Dooley

A Genetic Approach for Two Dimensional Packing with Constraints 291
Wee Sng Khoo, P. Saratchandran, N. Sundararajan

Task Environments for the Dynamic Development of Behavior 300
Derek Harter, Robert Kozma

Wavelet Packet Multi-layer Perceptron for Chaotic Time Series Prediction: Effects of Weight Initialization 310
Kok Keong Teo, Lipo Wang, Zhiping Lin

Genetic Line Search ... 318
S. Lozano, J.J. Domínguez, F. Guerrero, K. Smith

HARPIC, an Hybrid Architecture Based on Representations, Perceptions, and Intelligent Control: A Way to Provide Autonomy to Robots 327
Dominique Luzeaux, André Dalgalarrondo

Hybrid Intelligent Systems for Stock Market Analysis 337
Ajith Abraham, Baikunth Nath, P.K. Mahanti

On the Emulation of Kohonen’s Self-Organization via Single-Map Metropolis-Hastings Algorithms ... 346
Jorge Muruzábal

Quasi Analog Formal Neuron and Its Learning Algorithm Hardware 356
Karen Nazaryan

Producing Non-verbal Output for an Embodied Agent in an Intelligent Tutoring System .. 366
Roger Nkambou, Yan Laporte

Co-evolving a Neural-Net Evaluation Function for Othello by Combining Genetic Algorithms and Reinforcement Learning 377
Joshua A. Singer

Modeling the Effect of Premium Changes on Motor Insurance Customer Retention Rates Using Neural Networks 390
Ai Cheo Yeo, Kate A. Smith, Robert J. Willis, Malcolm Brooks

On the Predictability of Rainfall in Kerala - An Application of ABF Neural Network ... 400
Ninan Sajeeth Philip, K. Babu Joseph

A Job-Shop Scheduling Problem with Fuzzy Processing Times 409
Feng-Tse Lin
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech Synthesis Using Neural Networks Trained by an Evolutionary Algorithm</td>
<td>419</td>
</tr>
<tr>
<td>Trandafir Moisa, Dan Ontanu, Adrian H. Dediu</td>
<td></td>
</tr>
<tr>
<td>A Two-Phase Fuzzy Mining and Learning Algorithm for Adaptive Learning Environment</td>
<td>429</td>
</tr>
<tr>
<td>Chang Jiu Tsai, S.S. Tseng, Chih-Yang Lin</td>
<td></td>
</tr>
<tr>
<td>Applying Genetic Algorithms and Other Heuristic Methods to Handle PC Configuration Problems</td>
<td>439</td>
</tr>
<tr>
<td>Vincent Tam, K.T. Ma</td>
<td></td>
</tr>
<tr>
<td>Forecasting Stock Market Performance Using Hybrid Intelligent System</td>
<td>441</td>
</tr>
<tr>
<td>Xiaodan Wu, Ming Fung, Andrew Flitman</td>
<td></td>
</tr>
<tr>
<td>Multimedia</td>
<td></td>
</tr>
<tr>
<td>The MultiMedia Maintenance Management (M^4) System</td>
<td>459</td>
</tr>
<tr>
<td>Rachel J. McCrindle</td>
<td></td>
</tr>
<tr>
<td>Visualisations; Functionality and Interaction</td>
<td>470</td>
</tr>
<tr>
<td>Claire Knight, Malcolm Munro</td>
<td></td>
</tr>
<tr>
<td>DMEFS Web Portal: A METOC Application</td>
<td>476</td>
</tr>
<tr>
<td>Avichal Mehra, Jim Corbin</td>
<td></td>
</tr>
<tr>
<td>The Validation Web Site: A Combustion Collaboratory over the Internet</td>
<td>485</td>
</tr>
<tr>
<td>Angela Violi, Xiaodong Chen, Gary Lindstrom, Eric Eddings, Adel F. Sarofim</td>
<td></td>
</tr>
<tr>
<td>The Policy Machine for Security Policy Management</td>
<td>494</td>
</tr>
<tr>
<td>Vincent C. Hu, Deborah A. Frincke, David F. Ferraiolo</td>
<td></td>
</tr>
<tr>
<td>Multi-spectral Scene Generation and Projection</td>
<td></td>
</tr>
<tr>
<td>The Javelin Integrated Flight Simulation</td>
<td>507</td>
</tr>
<tr>
<td>Charles Bates, Jeff Lucas, Joe Robinson</td>
<td></td>
</tr>
<tr>
<td>A Multi-spectral Test and Simulation Facility to Support Missile Development, Production, and Surveillance Programs</td>
<td>515</td>
</tr>
<tr>
<td>James B. Johnson, Jerry A. Ray</td>
<td></td>
</tr>
<tr>
<td>Correlated, Real Time Multi-spectral Sensor Test and Evaluation (T&E) in an Installed Systems Test Facility (ISTF) Using High Performance Computing</td>
<td>521</td>
</tr>
<tr>
<td>John Kriz, Tom Joyner, Ted Wilson, Greg McGraner</td>
<td></td>
</tr>
<tr>
<td>Infrared Scene Projector Digital Model Development</td>
<td>531</td>
</tr>
<tr>
<td>Mark A. Manzardano, Brett Gossage, J. Brent Spears, Kenneth G. LeSueur</td>
<td></td>
</tr>
<tr>
<td>Infrared Scene Projector Digital Model Mathematical Description</td>
<td>540</td>
</tr>
<tr>
<td>Mark A. Manzardano, Brett Gossage, J. Brent Spears, Kenneth G. LeSueur</td>
<td></td>
</tr>
</tbody>
</table>
Distributed Test Capability Using Infrared Scene Projector Technology ... 550
David R. Anderson, Ken Allred, Kevin Dennen, Patrick Roberts,
William R. Brown, Ellis E. Burroughs, Kenneth G. LeSueur, Tim
Clardy
Development of Infrared and Millimeter Wave Scene Generators for the
P3I BAT High Fidelity Flight Simulation .. 558
Jeremy R. Farris, Marsha Drake

Novel Models for Parallel Computation
A Cache Simulator for Shared Memory Systems 569
Florian Schintke, Jens Simon, Alexander Reinefeld
On the Effectiveness of D-BSP as a Bridging Model
of Parallel Computation .. 579
Gianfranco Bilardi, Carlo Fantozzi, Andrea Pietracaprina,
Geppino Pucci
Coarse Grained Parallel On-Line Analytical Processing (OLAP) for Data
Mining ... 589
Frank Dehne, Todd Eavis, Andrew Rau-Chaplin
Architecture Independent Analysis of Parallel Programs 599
Ananth Grama, Vipin Kumar, Sanjay Ranka, Vineet Singh
Strong Fault-Tolerance: Parallel Routing in Networks with Faults 609
Jianer Chen, Eunseuk Oh
Parallel Algorithm Design with Coarse-Grained Synchronization 619
Vijaya Ramachandran
Parallel Bridging Models and Their Impact on Algorithm Design 628
Friedhelm Meyer auf der Heide, Rolf Wanka
A Coarse-Grained Parallel Algorithm for Maximal Cliques
in Circle Graphs ... 638
E.N. Caceres, S.W. Song, J.L. Szwarcfiter
Parallel Models and Job Characterization for System Scheduling 648

Optimization
Heuristic Solutions for the Multiple-Choice Multi-dimension
Knapsack Problem .. 659
M. Mostofa Akbar, Eric G. Manning, Gholamali C. Shoja,
Shahadat Khan
Tuned Annealing for Optimization .. 669
Mir M. Atiquallah, S.S. Rao
A Hybrid Global Optimization Algorithm Involving Simplex and Inductive
Search ... 680
Chetan Offord, Željko Bajzer
Applying Evolutionary Algorithms to Combinatorial
Optimization Problems ... 689
Enrique Alba Torres, Sami Khuri
Program and Visualization
Exploratory Study of Scientific Visualization Techniques for Program Visualization ... 701
 Brian J. d’Auriol, Claudia V. Casas, Pramod K. Chikkappaiah,
 L. Susan Draper, Ammar J. Esper, Jorge López, Rajesh Molakaseema,
 Seetharami R. Seelam, René Saenz, Qian Wen, Zhengjing Yang

Immersive Visualization Using AVS/Express ... 711
 Ian Curington

VisBench: A Framework for Remote Data Visualization and Analysis 718
 Randy W. Heiland, M. Pauline Baker, Danesh K. Tafti

The Problem of Time Scales in Computer Visualization 728
 Mark Burgin, Damon Liu, Walter Karplus

Making Movies: Watching Software Evolve through Visualisation......... 738
 James Westland Chain, Rachel J. McCrindle

Tools and Environments for Parallel and Distributed Programming
Performance Optimization for Large Scale Computing: The Scalable VAMPIR Approach ... 751
 Holger Brunst, Manuela Winkler, Wolfgang E. Nagel,
 Hans-Christian Hoppe

TRaDe: Data Race Detection for Java .. 761
 Mark Christiaens, Koen De Bosschere

Automation of Data Traffic Control on DSM Architectures 771
 Michael Frumkin, Haoqiang Jin, Jerry Yan

The Monitoring and Steering Environment ... 781
 Christian Glasner, Roland Hügl, Bernhard Reitinger,
 Dieter Kranzmüller, Jens Volkert

Token Finding Using Mobile Agents .. 791
 Delbert Hart, Mihail E. Tudoreanu, Eileen Kraemer

Load Balancing for the Electronic Structure Program GREMLIN in a Very Heterogenous SSH-Connected WAN-Cluster of UNIX-Type Hosts 801
 Siegfried Höfinger

DeWiz - Modular Debugging for Supercomputers and Computational Grids ... 811
 Dieter Kranzmüller

Fiddle: A Flexible Distributed Debugger Architecture 821
 João Lourenço, José C. Cunha

Visualization of Distributed Applications for Performance Debugging 831
 F.-G. Ottogalli, C. Labbé, V. Olive, B. de Oliveira Stein,
 J. Chassin de Kergommeaux, J.-M. Vincent
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achieving Performance Portability with SKaMPI for High-Performance MPI Programs</td>
<td>Ralf Reussner, Gunnar Hunzelmann</td>
<td>81</td>
</tr>
<tr>
<td>Cyclic Debugging Using Execution Replay</td>
<td>Michiel Ronsse, Mark Christiaens, Koen De Bosschere</td>
<td>85</td>
</tr>
<tr>
<td>Visualizing the Memory Access Behavior of Shared Memory Applications on NUMA Architectures</td>
<td>Jie Tao, Wolfgang Karl, Martin Schulz</td>
<td>86</td>
</tr>
<tr>
<td>CUMULVS Viewers for the ImmersaDesk</td>
<td>Torsten Wilde, James A. Kohl, Raymond E. Flanery</td>
<td>87</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>N-Body Simulation on Hybrid Architectures</td>
<td>P.M.A. Sloot, P.F. Spinnato, G.D. van Albada</td>
<td>89</td>
</tr>
<tr>
<td>Quantum Mechanical Simulation of Vibration-Torsion-Rotation Levels of Methanol</td>
<td>Yun-Bo Duan, Anne B. McCoy</td>
<td>90</td>
</tr>
<tr>
<td>Simulation-Visualization Complexes as Generic Exploration Environment</td>
<td>Elena V. Zudilova</td>
<td>91</td>
</tr>
<tr>
<td>Efficient Random Process Generation for Reliable Simulation of Complex Systems</td>
<td>Alexey S. Rodionov, Hyunseung Choo, Hee Y. Youn, Tai M. Chung, Kiheon Park</td>
<td>92</td>
</tr>
<tr>
<td>Replicators & Complementarity: Solving the Simplest Complex System without Simulation</td>
<td>Anil Menon</td>
<td>93</td>
</tr>
<tr>
<td>Soft Computing: Systems and Applications</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>More Autonomous Hybrid Models in Bang2</td>
<td>Roman Neruda, Pavel Kršina, Zuzana Petrová</td>
<td>95</td>
</tr>
<tr>
<td>Model Generation of Neural Network Ensembles Using Two-Level Cross-Validation</td>
<td>S. Vasupongayya, R.S. Renner, B.A. Juliano</td>
<td>96</td>
</tr>
<tr>
<td>A Comparison of Neural Networks and Classical Discriminant Analysis in Predicting Students’ Mathematics Placement Examination Scores</td>
<td>Stephen J. Sheel, Deborah Vrooman, R.S. Renner, Shanda K. Dausey</td>
<td>97</td>
</tr>
<tr>
<td>Neural Belief Propagation without Multiplication</td>
<td>Michael J. Barber</td>
<td>98</td>
</tr>
<tr>
<td>Fuzzy Logic Basis in High Performance Decision Support Systems</td>
<td>A. Bogdanov, A. Degtyarev, Y. Nechaev</td>
<td>99</td>
</tr>
<tr>
<td>Scaling of Knowledge in Random Conceptual Networks</td>
<td>Lora J. Durak, Alfred W. Hübler</td>
<td>100</td>
</tr>
</tbody>
</table>
Implementation of Kolmogorov Learning Algorithm for Feedforward Neural Networks ... 986
Roman Neruda, Arnošt Štědrý, Jitka Drkošová
Noise-Induced Signal Enhancement in Heterogeneous Neural Networks . . 996
Michael J. Barber, Babette K. Dellen

Phylogenetic Inference for Genome Rearrangement Data
Evolutionary Puzzles: An Introduction to Genome Rearrangement 1003
Mathieu Blanchette
High-Performance Algorithmic Engineering for Computational Phylogenetics ... 1012
Bernard M.E. Moret, David A. Bader, Tandy Warnow
Phylogenetic Inference from Mitochondrial Genome Arrangement Data . 1022
Donald L. Simon, Bret Larget

Late Submissions
Genetic Programming: A Review of Some Concerns 1031
Maumita Bhattacharya, Baikunth Nath
Numerical Simulation of Quantum Distributions: Instability and Quantum Chaos ... 1041
G.Y. Kryuchkyan, H.H. Adamyan, S.B. Manvelyan
Identification of MIMO Systems by Input-Output Takagi-Sugeno Fuzzy Models .. 1050
Nirmal Singh, Renu Vig, J.K. Sharma
Control of Black Carbon, the Most Effective Means of Slowing Global Warming ... 1060
Mark Z. Jacobson
Comparison of Two Schemes for the Redistribution of Moments for Modal Aerosol Model Application 1061
U. Shankar, A.L. Trayanov
A Scale-Dependent Dynamic Model for Scalar Transport in the Atmospheric Boundary Layer ... 1062
Fernando Port-Agel, Qiao Qin

Advances in Molecular Algorithms
MDT - The Molecular Dynamics Test Set 1065
Eric Barth
Numerical Methods for the Approximation of Path Integrals Arising in Quantum Statistical Mechanics 1066
Steve D. Bond
The Multigrid N-Body Solver ... 1067
David J. Hardy
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Your Hard-Spheres Have Tails? A Molecular Dynamics Integration</td>
<td>1068</td>
</tr>
<tr>
<td>Algorithm for Systems with Mixed Hard-Core/Continuous Potentials</td>
<td></td>
</tr>
<tr>
<td>Brian B. Laird</td>
<td></td>
</tr>
<tr>
<td>An Improved Dynamical Formulation for Constant Temperature and</td>
<td>1069</td>
</tr>
<tr>
<td>Pressure Dynamics, with Application to Particle Fluid Models</td>
<td></td>
</tr>
<tr>
<td>Benedict J. Leimkuhler</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>1071</td>
</tr>
</tbody>
</table>