Over the past three decades, software engineers have derived a progressively better understanding of the characteristics of complexity in software. It is now widely recognised that interaction is probably the most important single characteristic of complex software. Software architectures that contain many dynamically interacting components, each with their own thread of control, and engaging in complex coordination protocols, are typically orders of magnitude more complex to correctly and efficiently engineer than those that simply compute a function of some input through a single thread of control.

Unfortunately, it turns out that many (if not most) real-world applications have precisely these characteristics. As a consequence, a major research topic in computer science over at least the past two decades has been the development of tools and techniques to model, understand, and implement systems in which interaction is the norm. Indeed, many researchers now believe that in future computation itself will be understood as chiefly a process of interaction.

Since the 1980s, software agents and multiagent systems have grown into what is now one of the most active areas of research and development activity in computing generally. There are many reasons for the current intensity of interest, but certainly one of the most important is that the concept of an agent as an autonomous system, capable of interacting with other agents in order to satisfy its design objectives, is a natural one for software designers. Just as we can understand many systems as being composed of essentially passive objects, which have state, and upon which we can perform operations, so we can understand many others as being made up of interacting, semiautonomous agents.

This recognition has led to the growth of interest in agents as a new paradigm for software engineering. As its very successful predecessors, AOSE 2000 and AOSE 2001 (Lecture Notes in Computer Science, Volumes 1957 and 2222), the AOSE 2002 workshop sought to examine the credentials of agent-based approaches as a software engineering paradigm, and to gain an insight into what agent-oriented software engineering will look like. AOSE 2002 was held at the First International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS) in Bologna, Italy, in July 2002. Some 49 papers were submitted to AOSE 2002, and 15 of them were accepted for presentation (which is an acceptance rate of 30%). The submissions followed a call for papers on all aspects of agent-oriented software engineering, and particularly the following:

- Methodologies for agent-oriented analysis and design
- Relationship of AOSE to other SE paradigms (e.g., OO)
- UML and agent systems
- Agent-oriented requirements analysis and specification
- Refinement and synthesis techniques for agent-based specifications
Verification and validation techniques for agent-based systems
Software development environments and CASE tools for AOSE
Standard APIs for agent programming
Formal methods for agent-oriented systems, including specification and verification logics
Model checking for agent-oriented systems
Engineering large-scale agent systems
Experiences with field-tested agent systems
System deployment using standards such as FIPA
Best practice in agent-oriented development
Market and other economic models in agent systems engineering
Practical coordination and cooperation frameworks for agent systems
Standardisations for AOSE
Reuse approaches for agent-oriented software, including design patterns, frameworks, components, and architectures
Integration of agent-oriented software into existing business processes and implications for business process reengineering
Implications of agent-oriented software on organizational and social structures within and between companies (e.g., changes in roles, responsibilities, transparency, business processes, and decision schemes)

This volume contains revised versions of the 15 papers presented at the workshop. Additionally, it contains two invited contributions, by Massimo Benerecetti and Alessandro Cimatti on “Validation of multiagent systems by symbolic model checking,” and Jörg Müller and Bernhard Bauer on “Agent-oriented software technologies: flaws and remedies.” We believe that this thoroughly prepared volume is of particular value to all readers interested in key topics and most recent developments in the very exciting field of agent-oriented software engineering.

Acknowledgements. We thank the authors, the participants, and the reviewers for making AOSE 2002 a high-quality scientific event. Special thanks also goes to Keith Decker, the AAMAS 2002 workshop chair, for his support, and to Alfred Hofmann at Springer-Verlag for the continued opportunity to publish the AOSE proceedings in the LNCS series.

December 2002
Fausto Giunchiglia
James Odell
Gerhard Weiß
Organising Committee

Fausto Giunchiglia (Co-chair)
University of Trento and ITC-IRST, Italy
E-mail: M.J.Wooldridge@csc.liv.ac.uk

James Odell (Co-chair)
James Odell Associates, Ann Arbor, MI, USA
E-mail: email@jamesodell.com

Gerhard Weiß (Co-chair)
Technical University of Munich, Germany
E-mail: weissg@in.tum.de

Steering Committee

Paolo Ciancarini, University of Bologna, Italy
Michael Wooldridge, University of Liverpool, UK

Program Committee

Bernard Bauer (Germany)  Manuel Kolp (Belgium)
Federico Bergenti (Italy)  Yannis Labrou (USA)
Scott DeLoach (USA)  Alex van Lamsweerde (France)
Marie-Pierre Gervais (France)  Jürgen Lind (Germany)
Paolo Giogini (Italy)  John Mylopoulos (Canada)
Olivier Gutknecht (France)  Andrea Omicini (Italy)
Michael Huhns (USA)  Van Parunak (USA)
Carlos Iglesias (Spain)  Anna Perini (Italy)
Matthias Jarke (Germany)  Onn Shehory (Israel)
Nicholas Jennings (UK)  Morris Sloman (UK)
Catholijn Jonker (The Netherlands)  Eric Yu (Canada)
Liz Kendall (Australia)  Franco Zambonelli (Italy)
David Kinny (Australia)

Additional Reviewers

Paolo Bresciani (Italy)  Benno Overeinder (The Netherlands)
Jan Broersen (The Netherlands)  Michael Rovatsos (Germany)
Matthias Nickles (Germany)  Arnon Sturm (Israel)
Table of Contents

Part I: Modeling, Specification, and Validation

Specifying Electronic Societies with the Causal Calculator ............... 1
 Alexander Artikis, Marek Sergot, and Jeremy Pitt

Modeling Agents and Their Environment .................................. 16
 James J. Odell, H. Van Dyke Parunak, Mitch Fleischer,
 and Sven Brueckner

Validation of Multiagent Systems by Symbolic Model Checking ........ 32
 Massimo Benerecetti and Alessandro Cimatti

Part II: Patterns, Architectures, and Reuse

Patterns in Agent-Oriented Software Engineering ....................... 47
 Jürgen Lind

Concurrent Architecture for a Multi-agent Platform ..................... 59
 Michael Duvigneau, Daniel Moldt, and Heiko Rölke

Re-use of Interaction Protocols for Agent-Based Control Applications ... 73
 Stefan Bussmann, Nicholas R. Jennings, and Michael Wooldridge

Architecting for Reuse: A Software Framework
for Automated Negotiation .................................................. 88
 Claudio Bartolini, Chris Preist, and Nicholas R. Jennings

Multi-agent and Software Architectures: A Comparative Case Study .... 101
 Paolo Giorgini, Manuel Kolp, and John Mylopoulos

Part III: UML and Agent Systems

Using UML State Machine Models for More Precise
and Flexible JADE Agent Behaviors ..................................... 113
 Martin L. Griss, Steven Fonseca, Dick Cowan, and Robert Kessler

Generating Machine Processable Representations
of Textual Representations of AUML .................................... 126
 Jean-Luc Koning and Ivan Romero-Hernandez

A UML Profile for External Agent-Object-Relationship (AOR) Models . . 138
 Gerd Wagner

Extending Agent UML Sequence Diagrams ............................. 150
 Marc-Philippe Huget
Part IV: Methodologies and Tools

The Tropos Software Development Methodology: Processes, Models and Diagrams ............................................. 162
   Fausto Giunchiglia, John Mylopoulos, and Anna Perini

Prometheus: A Methodology for Developing Intelligent Agents .......... 174
   Lin Padgham and Michael Winikoff

Tool-Supported Process Analysis and Design for the Development of Multi-agent Systems .............................................. 186
   Holger Knublauch and Thomas Rose

Assembling Agent Oriented Software Engineering Methodologies from Features .............................................. 198
   Thomas Juan, Leon Sterling, and Michael Winikoff

Part V: Positions and Perspectives

Agent-Oriented Software Technologies: Flaws and Remedies ............ 210
   Jörg P. Müller and Bernhard Bauer

Author Index ..................................................... 229