Editorial Advisory Board

EUROPE
Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, LAAS, France
Henrik Christensen, KTH, Sweden
Paolo Dario, Scuola Superiore Sant’Anna Pisa, Italy
Rüdiger Dillmann, Universität Karlsruhe, Germany

AMERICA
Ken Goldberg, UC Berkeley, USA
John Hollerbach, University of Utah, USA
Lydia Kavraki, Rice University, USA
Tim Salcudean, University of British Columbia, Canada
Sebastian Thrun, Carnegie Mellon University, USA

ASIA/OCEANIA
Peter Corke, CSIRO, Australia
Makoto Kaneko, Hiroshima University, Japan
Sukhan Lee, Samsung Advanced Institute of Technology, Korea
Yangsheng Xu, Chinese University of Hong Kong, PRC
Shin’ichi Yuta, Tsukuba University, Japan
At the dawn of the new millennium, robotics is undergoing a major transformation in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into the challenges of unstructured environments. Interacting with, assisting, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives.

The goal of this new series of Springer Tracts in Advanced Robotics is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the greater dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.

As one of robotics pioneering symposia, ISRR, the "International Symposium on Robotics Research," has established over the past two decades some of the field’s most fundamental and lasting contributions. With the launching of STAR, this and other thematic symposia devoted to excellence in robotics find an important platform for closer links and extended reach within the research community.

The Tenth edition of "Robotics Research" edited by Raymond Jarvis and Alex Zelinsky offers in its 11-part volume a collection of a broad range of topics in robotics. The content of these contributions provides a wide coverage of the current state of robotics research: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new areas of applications.

Remarkably, the focus of a sizable portion of this edition is on advances in robotic technologies and applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field’s increased maturity and expanded scope. The Tenth edition of ISRR culminates with this important reference on the current developments and new directions in the field of robotics - a true tribute to its contributors and organizers!

Stanford, January 2003

Oussama Khatib
Preface

The 10th International Symposium on Robotics Research (ISRR 2001) was held from November 9–12 2001, at Lorne, Victoria. The ISRR series of conferences began in 1983, and is sponsored by the International Foundation of Robotics Research (IFRR), an independent organization comprised of top researchers around the world. The goal of the ISRR is to bring together active, leading robotics researchers from academia, government, and industry, to define the state of the art of robotics and its future direction. Papers are generally more reflective and authoritative than those at other conferences, and over the years the ISRR has developed a high reputation. The symposium is typically held in a pleasant setting with a limited number of participants in order to maximize interaction.

This proceedings comprises 40 papers selected for ISRR 2001. The process of paper selection proceeded primarily through an open Call for Papers; these papers were reviewed by the Symposium co-chairs and the IFRR. In addition, the three regional delegations of the IFRR (North America, Europe, and Asia/Australia) invited a total of 18 papers.

IFRR (at the time of paper selection and hence the formal Program Committee for the Symposium)

Hirochika Inoue, President
George Giralt, Secretary
Takeo Kanade, Treasurer
Ruzena Bajcsy
Robert Bolles
Rod Brooks
Raja Chatila
Paolo Dario
Joris De Schutter

Jan-Olof Eklundh
Shigeo Hirose
Gerd Hirzinger
Ray Jarvis
Dan Koditschek
Bernie Roth
Tomomasa Sato
Yoshiaki Shirai
Tsuneo Yoshikawa

Papers were presented in a single track during the four day symposium. In addition, there were a number of information presentations by participants, a video session, and evening group discussions. A session on Field Robotics was organised by Chuck Thorpe and Hugh Durrant-Whyte. Alex Zelinsky organised a session on commercialisation of robotics research results. In keeping with the spirit of past ISRR’s, a number of breaks and activities were scheduled to allow for greater participant interaction. These included walks, and a tour of the scenic areas around Lorne.

The topics can be loosely placed into 8 categories: (1) Dynamics and control; (2) Planning and modelling; (3) Sensing technologies; (4) Vision based robotics; (5) Mobile robot localisation and mapping; (6) Humanoid robotics; (7) Human-centred robots; and (8) Applications. They represent progress in traditional areas of robotics, in areas of more recent expansion or emphasis, and in more speculative directions.
for robotics research and development. ISRR 2001 was an opportune time to reflect on the successes of robotics, on the expansion of topics, which are now encompassed by the field, and on the challenges for future commercial, technical, and intellectual success. The papers in this volume provide ample substance for this reflection.

The ISRR 2001 co-chairs/editors would like to thank Sarina Kennedy and Amber McKinley, secretarial staff at Monash University who greatly contributed to the smooth handling of research manuscript collection, transmission to reviewers and final assemblage for pre-print production, and Rosemary Shepherd, Pei Yean Lee and James Ashton of the Australian National University for helping to put the book together.

Canberra, Australia, November 2002

Raymond A. Jarvis
Alex Zelinsky
Contents

Part 1. Simultaneous Localization And Mapping

<table>
<thead>
<tr>
<th>Session Summary</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raja Chatila</td>
<td></td>
</tr>
</tbody>
</table>

Towards Robust Data Association and Feature Modeling for Concurrent Mapping and Localization
John J. Leonard, Paul M. Newman, Richard J. Rikoski, José Neira, Juan D. Tardós
1 Introduction ... 7
2 “Explore and return” using Laser 10
3 Sonar Perceptual Grouping Using the Hough Transform 12
4 Delayed Stochastic Mapping 13
5 Conclusion .. 19

A Real-time Algorithm for Acquiring Multi-Planar Volumetric Models with Mobile Robots
Sebastian Thrun, Wolfram Burgard, Deepayan Chakrabarti, Rosemary Emery, Yufeng Liu, Christian Martin
1 Introduction ... 21
2 Multi-Surface Models .. 23
3 Acquisition of Compact 3D Models in Real-Time 25
4 Experimental Results ... 28
5 Discussion .. 28

Implementation of Simultaneous Navigation and Mapping in Large Outdoor Environments
Jose Guivant, Eduardo Nebot
1 Introduction ... 37
2 Simultaneous Localization and Mapping 38
3 Sub-Optimal Decorrelation Algorithm 40
4 Environment Description and Feature Detection 43
5 Experimental Results ... 46
6 Conclusions .. 46

A Bayesian Algorithm for Simultaneous Localisation and Map Building
Hugh Durrant-Whyte, Somajyoti Majumder, Sebastian Thrun, Marc de Battista, Steve Scheduling
1 Introduction ... 49
2 Bayesian Formulation of the SLAM problem 50
3 Solving the SLAM problem ... 52
4 Implementation of the SOG Method in Sub-Sea SLAM 56
5 Discussion and Conclusion ... 59
Part 2. Humanoid Robotics I

<table>
<thead>
<tr>
<th>Session Summary</th>
<th>Hirochika Inoue</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>2 Essential Issues in Imitation</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>3 ETL-Humanoid: Our Research Vehicle</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>4 Multi-modal Perception and Action</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>5 Proto-Imitation Experiments</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>6 Summary and Conclusions</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Low-level Autonomy of the Humanoid Robots H6 & H7</td>
<td>Satoshi Kagami, Koichi Nishiwaki, James Kuffner, Kei Okada, Yasuo Kuniyoshi, Masayuki Inaba, Hirochika Inoue</td>
<td>83</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>2 Low-level Autonomy of Humanoid Robots</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>3 Humanoid Robots H6 & H7</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>4 Autonomy in Bipedal Locomotion</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>5 Autonomy in Object Manipulation</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>6 Autonomy in Human Interaction</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>7 Conclusion</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>OpenHRP: Open Architecture Humanoid Robotics Platform</td>
<td>Hirohisa Hirukawa, Fumio Kanehiro, Shuuji Kajita</td>
<td>99</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>2 Overview of OpenHRP</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3 Unification of the controllers</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>4 Determining the repulsive force</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>5 Sharing software between the simulator and the controllers</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>6 Simulations and experiments</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>7 Conclusions</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Building Spined Muscle-Tendon Humanoid</td>
<td>Masayuki Inaba, Ikuo Mizuuchi, Ryosuke Tajima, Tomoaki Yoshikai, Daisuke Sato, Koichi Nagashima, Hirochika Inoue</td>
<td>113</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>2 Design of spined muscle-tendon humanoid “Kenta”</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>3 Design of the Software System Structure</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>4 First steps to manage the body</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>5 Summary and Concluding Remarks</td>
<td>126</td>
<td></td>
</tr>
</tbody>
</table>
Part 3. Dynamics and Control

Session Summary ... 131
Bernard Roth

Stride Period Adaptation for a Biomimetic Running Hexapod 133
Jonathan K. Karpick, Jorge G. Cham, Jonathan E. Clark, Mark R. Cutkosky
1 Introduction ... 133
2 Simplified Model for Open-Loop Locomotion and Adaptation 135
3 Stride Period Adaptation ... 141
4 Conclusions and Future Work 144

Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain
Using a Neural System Model .. 147
Hiroshi Kimura, Yasuhiro Fukuoka, Yoshiro Hada, Kunikatsu Takase
1 Introduction ... 147
2 Adaptive Dynamic Walking Using a Neural System Model 148
3 Planar Walking ... 152
4 Three-dimensional Walking ... 155
5 Conclusion .. 159

Design and Applications of Parallel Robots 161
Karol Miller
1 Introduction ... 161
2 Optimal Design of Parallel Robots 161
3 Medical Applications – MRI Compatible Parallel Robot 170
4 Conclusions and Discussion 172
Part 4. Humanoid Robotics II

Session Summary .. 177
Tomomasa Sato

Development of an Interactive Humanoid Robot “Robovie” – An interdisciplinary approach .. 179
Hiroshi Ishiguro, Tetsuo Ono, Michita Imai, Takayuki Kanda
1 Introduction ... 179
2 Robovie: An Interactive Humanoid Robot 179
3 Two Cognitive Experiments ... 181
4 A Robot Architecture for Generating Episode Chains 186
5 Conclusion .. 189

The German Collaborative Research Centre on Humanoid Robots 193
Rüdiger Dillmann
1 Introduction ... 193
2 The PbD Process ... 198
3 System Structure ... 200
4 PbD Phases ... 201
5 Experiments ... 203
6 Future Work ... 204

A New Generation of Compliance Controlled Manipulators with Human
Arm Like Properties ... 207
Ralf Koenne, Alin Albu-Schäffer, Carsten Preusche, Günter Schreiber, Gerd Hirzinger
1 Introduction ... 207
2 The Human Arm System .. 208
3 The Advanced Robot: Design and Control Principles 210
4 Conclusion .. 217
Part 5. Human Centred Robotics

Session Summary

James Trevelyan

Uniting Haptic Exploration and Display

Allison M. Okamura

1. Introduction ... 225
2. The Correspondence Between Exploration and Display 227
3. Exploration, Modeling, and Display of Surface Features 229
4. Conclusions and Future Work 235

Human-Centered Robotics and Interactive Haptic Simulation

O. Khatib, O. Brock, K.C. Chang, D. Ruspini, L. Sentis, S. Viji

1. Introduction ... 239
2. Whole-Robot Control: Task and Posture 241
3. Interactive Haptic Simulation 246
4. Task-Consistent Elastic Plans 247
5. Conclusion .. 251

Collaboration, Dialogue, and Human-Robot Interaction

Terrence Fong, Charles Thorpe, Charles Baur

1. Introduction ... 255
2. Dialogue .. 257
3. System Design .. 258
4. Results .. 261
5. Discussion .. 264
6. Related Work .. 265
Part 6. Applications

Session Summary .. 269
Paolo Dario

Vertebrate-type Perception and Gaze Control for Road Vehicles 271
M. Pellkofer, M. Lützeler, E. D. Dickmanns
1 Introduction .. 271
2 Motivation .. 272
3 Camera Configuration .. 273
4 Gaze Control Unit .. 274
5 Requesting Attention .. 276
6 Active Vision for Road Recognition 277
7 Optimization of Gaze Behavior 280
8 Experimental results ... 284
9 Conclusion .. 286

Towards a Realistic Medical Simulator using Virtual Environments and
Haptic Interaction .. 289
Christian Laugier, César Mendoza, Kenneth Sundaraj
1 Introduction .. 289
2 Physical Models for Soft Tissue 291
3 Numerical Resolution .. 296
4 Real-Time Interactions ... 298
5 Conclusion .. 304

Spoken Language Interface of the Jijo-2 Office Robot 307
Toshihiro Matsui, Hideki Asoh, Futoshi Asano, John Fry, Isao Hara, Yoichi
Motomura and Katsunobu Itoh
1 Introduction .. 307
2 Robot Architecture ... 308
3 Navigation and Map .. 309
4 Spoken Language Dialogue System 310
5 Task Execution .. 313
6 Example Dialogue and Behavior 314
7 Conclusion .. 316

Intelligent Home Appliances ... 319
Henrik I. Christensen
1 Introduction .. 319
2 Example Systems .. 320
3 Analysis/Synthesis ... 324
4 Summary .. 326
Part 7. Field Robots

Session Summary .. 331
Chuck Thorpe, Hugh Durrant-Whyte
Part 8. Vision-Based Navigation

Session Summary .. 343
Yoshiaki Shirai

Vision-based Navigation, Environmental Representations and Imaging Geometries .. 347
José Santos-Victor, Alexandre Bernardino
1 Introduction ... 347
2 Imaging geometries .. 348
3 Environmental representations 350
4 Examples of Navigation and Vision based Control 353
5 Conclusions ... 359

Mobile Robot Navigation As A Planar Visual Servoing Problem 361
Peter Corke
1 Introduction ... 361
2 Visual Servoing Revisited 362
3 A Planar Formulation For Navigation 364
4 What Can We Learn From The Visual Servoing Literature? 369
5 Conclusions ... 370

Landing Strategies in Honeybees, and Applications to UAVs 373
M. V. Srinivasan, S. W. Zhang, J. S. Chahl, M. A. Garratt
1 Introduction ... 373
2 How Bees Perform Smooth Landings 373
3 Tests on a Robotic Gantry 377
4 Implementation in flying vehicles 381
5 Conclusions ... 382

Visual navigation in a plane using the conformal point 385
Richard Hartley, Chanop Silpa-Anan
1 Motion in a plane .. 385
2 Proof of the angle construction 386
3 Determining the position of the conformal point 387
4 Homography from conformal point 388
5 Camera moving in a plane 391
6 Motion estimation in planar motion 392
7 Examples .. 393
8 Conclusion .. 396
Part 9. Planning and Modeling

Session Summary ... 401
Bob Bolles

A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy
Collision Checking ... 403
Gildardo Sánchez, Jean-Claude Latombe

1 Introduction .. 403
2 Definitions and Notations .. 405
3 Experimental Foundations .. 406
4 Description of SBL ... 407
5 Experimental Results .. 412
6 Conclusion ... 416

Geometrical Interpretation of the CCT Stiffness Mapping for Serial Man-
ipulators .. 419
Chintien Huang, Imin Kao

1 Introduction .. 419
2 Screw-Based Jacobian Matrices of Serial Manipulators 420
3 The Conservative Congruence Transformation 422
4 The Interpretation of K_g .. 423
5 Example of the Planar 3R Manipulator 424
6 Discussion .. 428
7 Conclusion ... 430

A Dynamic Model of Contact Between a Robot and an Environment with
Unknown Dynamics ... 433
Roy Featherstone

1 Introduction .. 433
2 Background .. 434
3 Dual Vector Spaces .. 435
4 Dynamic Model of Contact .. 439
5 Analysis .. 441
6 Control ... 443
7 Conclusion ... 445
Part 10. Robot Technology I

Session Summary .. 449
John Hollerbach, Jan-Olof Eklundh

AURORA – Minimalist Design for Tracked Locomotion 453
Dr. Hagen Schempf
1 Introduction ... 453
2 Background ... 454
3 Performance Requirement ... 455
4 System Description .. 455
5 Prototype Testing .. 463
6 Summary & Conclusion ... 463
7 Future Work ... 464

Analysis of Robotic Locomotion Devices for the Gastrointestinal Tract . 467
L. Phee, A. Menciassi, D. Accoto, C. Stefanini, P. Dario
1 Introduction ... 467
2 Inchworm Type Locomotion 468
3 Types of Actuators and Mechanisms 474
4 First Prototype for Navigation in the Colon: Experimental Results 476
5 Modified Clampers Disposition: A Second Prototype 479
6 Conclusions ... 481

Advanced Sonar Sensing ... 485
Lindsay Kleeman
1 Introduction ... 485
2 Sensor Design ... 486
3 Range and Bearing Measurements 489
4 Natural Selection of Landmarks 492
5 Discrimination ... 492
6 Interference Rejection ... 493
7 Classification ... 495
8 Some Underwater Results .. 496
9 Conclusions ... 497

Mechano-Media that Transmit Kinesthetic Knowledge from a Human to
Other Humans ... 499
Yasuyoshi Yokokohji, Yoshihiko Sugawara, Junji Kinoshita, Tsuneo
Yoshikawa
1 Introduction ... 499
2 WYSIWYF display .. 501
3 Accurate Image Overlay on HMDs by Hybrid Vision/Inertial Tracking 504
4 Encountered-type Haptic Device That Renders Multiple Virtual Objects . 506
5 Mechano-Media ... 510
6 Conclusion ... 511
Part 11. Robot Technology II

Session Summary ... 515
Raymond Austin Jarvis, Alex Zelinsky

The Evolution of a Robot Soccer Team ... 517
Claude Sammut, Bernhard Hengst
1 Introduction .. 517
2 The Sony Legged Robot League ... 518
3 History ... 518
4 Vision .. 520
5 Localisation ... 523
6 Locomotion ... 525
7 Communication ... 527
8 Game Play Behaviours ... 528
9 Conclusion ... 529

A New Class of Hybrid Motion Simulation Using a Very Fast Parallel
Robot ... 531
Masaru Uchiyama, Susumu Tarao, Hiroshi Kawabe
1 Introduction ... 531
2 A New Class of Hybrid Simulation 532
3 Design of a Fast Parallel Robot ... 533
4 The Second Prototype Robot ... 535
5 A High-Speed Hybrid Motion Simulator 536
6 Experiments on the Simulator ... 538
7 Conclusions ... 542

General Solution for Linearized Error Propagation in Vehicle Odometry 545
Alonzo Kelly
1 Introduction ... 545
2 Linearized Error Dynamics ... 548
3 Solution to Linearized Systems .. 549
4 Application To Odometry ... 553
5 Validation .. 555
6 Conclusions ... 557

Probabilistic Adaptive Agent Based System for Dynamic State Estima-
tion using Multiple Visual Cues ... 559
Alvaro Soto, Pradeep Khosla
1 Introduction ... 559
2 Probabilistic Adaptive Agent Based System 561
3 Related Work ... 566
4 Implementation .. 566
5 Results .. 569
6 Conclusions ... 570