Triangular Urchin (an Iterated Functions System of 2 polar functions) emerged from an urchin structure after a few generations using ArtiE-Fract. The evolutionary process was only based on soft mutations, some of them directly induced by the author.
Volume Editors

Günther R. Raidl
Algorithms and Data Structures Group
Institute of Computer Graphics
Vienna University of Technology
Favoritenstrasse 9-11/186
1040 Vienna, Austria
raidl@ads.tuwien.ac.at

Jens Gottlieb
SAP AG
Neurottstrasse 16
69190 Walldorf, Germany
jens.gottlieb@sap.com
Evolutionary computation (EC) involves the study of problem-solving and optimization techniques inspired by principles of natural evolution and genetics. EC has been able to draw the attention of an increasing number of researchers and practitioners in several fields. Evolutionary algorithms have in particular been shown to be effective for difficult combinatorial optimization problems appearing in various industrial, economics, and scientific domains.

This volume contains the proceedings of EvoCOP 2005, the 5th European Conference on Evolutionary Computation in Combinatorial Optimization. It was held in Lausanne, Switzerland, on 30 March–1 April 2005, jointly with EuroGP 2005, the 8th European Conference on Genetic Programming, and the EvoWorkshops 2005, which consisted of the following six individual workshops: EvoBIO, the 3rd European Workshop on Evolutionary Bioinformatics; EvoCOMNET, the 2nd European Workshop on Evolutionary Computation in Communication, Networks, and Connected Systems; EvoHOT, the 2nd European Workshop on Hardware Optimisation Techniques; EvoIASP, the 7th European Workshop on Evolutionary Computation in Image Analysis and Signal Processing; EvoMUSART, the 3rd European Workshop on Evolutionary Music and Art; and EvoSTOC, the 2nd European Workshop on Evolutionary Algorithms in Stochastic and Dynamic Environments.

EvoCOP, held annually as a workshop since 2001, became a conference in 2004 and it is now the premier European event focusing on evolutionary computation in combinatorial optimization. The events gave researchers an excellent opportunity to present their latest research and to discuss current developments and applications, besides stimulating closer future interaction between members of this scientific community. Accepted papers of previous events were published by Springer in the series Lecture Notes in Computer Science (LNCS volumes 2037, 2279, 2611, and 3004).

The double-blind reviewing process resulted in a strong selection among the submitted papers; the acceptance rate was 36.4%. All accepted papers were presented orally at the conference and are included in this proceedings volume. We would like to give credit to the members of our Program Committee, to whom we are very grateful for their quick and thorough work.

<table>
<thead>
<tr>
<th>EvoCOP</th>
<th>submitted</th>
<th>accepted</th>
<th>acceptance ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>31</td>
<td>23</td>
<td>74.2%</td>
</tr>
<tr>
<td>2002</td>
<td>32</td>
<td>18</td>
<td>56.3%</td>
</tr>
<tr>
<td>2003</td>
<td>39</td>
<td>19</td>
<td>48.7%</td>
</tr>
<tr>
<td>2004</td>
<td>86</td>
<td>23</td>
<td>26.7%</td>
</tr>
<tr>
<td>2005</td>
<td>66</td>
<td>24</td>
<td>36.4%</td>
</tr>
</tbody>
</table>
EvoCOP 2005 covers evolutionary algorithms as well as related approaches like scatter search, simulated annealing, ant colony optimization, immune algorithms, variable-neighborhood search, hyperheuristics, and estimation of distribution algorithms. The papers deal with representations, analysis of operators and fitness landscapes, and comparison of algorithms. The list of studied combinatorial optimization problems includes prominent examples like graph coloring, quadratic assignment, the knapsack problem, graph matching, packing, scheduling, timetabling, lot-sizing, and the traveling-salesman problem.

For the first time, EvoCOP used a conference management system, VSIS ConfTool 1.1.2, to handle paper submissions and the reviewing process. Harald Weinreich and his team, who developed this software and made it available to us, deserve our gratitude for this open-source project that saved us a lot of time. We would like to thank Philipp Neuner for administrating the conference management system.

Finally, many thanks go to Jennifer Willies, who cared about the administration and coordination of EuroGP 2005, EvoCOP 2005, and the EvoWorkshops 2005, for her tremendous efforts.

March 2005

Günther R. Raidl

Jens Gottlieb
Organization

EvoCOP 2005 was organized jointly with EuroGP 2005 and the EvoWorkshops 2005.

Organizing Committee

Chairs: Günther R. Raidl, Vienna University of Technology, Austria
Jens Gottlieb, SAP AG, Germany
Local Chair: Marco Tomassini, University of Lausanne, Switzerland
Publicity Chair: Jano van Hemert, Napier University, Edinburgh, UK

Program Committee

Adnan Acan, Eastern Mediterranean University, Turkey
Hernan Aguirre, Shinshu University, Japan
Enrique Alba, University of Málaga, Spain
M. Emin Aydin, London South Bank University, UK
Jean Berger, Defence Research and Development Canada, Canada
Christian Bierwirth, University of Halle-Wittenberg, Germany
Christian Blum, Universitat Politècnica de Catalunya, Spain
Edmund Burke, University of Nottingham, UK
Ernesto Costa, University of Coimbra, Portugal
Carlos Cotta, University of Málaga, Spain
Peter Cowling, University of Bradford, UK
Bart Craenen, Napier University, Edinburgh, UK
David Davis, NuTech Solutions, Inc., USA
Marco Dorigo, Université Libre de Bruxelles, Belgium
Karl Dörner, University of Vienna, Austria
Anton Eremeev, Omsk Branch of the Sobolev Institute of Mathematics, Russia
David Fogel, Natural Selection, Inc., USA
Bernd Freisleben, University of Marburg, Germany
Jens Gottlieb, SAP AG, Germany
Michael Guntsch, Eurobios UK, UK
Walter Gutjahr, University of Vienna, Austria
Jin-Kao Hao, University of Angers, France
Emma Hart, Napier University, Edinburgh, UK
William E. Hart, Sandia National Laboratories, USA
Jano van Hemert, Napier University, Edinburgh, UK
Jörg Homberger, Stuttgart University of Cooperative Education, Germany
Mikkel T. Jensen, Acure, Denmark
Bryant A. Julstrom, St. Cloud State University, USA
Graham Kendall, University of Nottingham, UK
Joshua D. Knowles, University of Manchester, UK
Gabriele Koller, Vienna University of Technology, Austria
Mario Köppen, Fraunhofer IPK, Germany
Jozef J. Kratica, Serbian Academy of Sciences and Arts, Serbia and Montenegro
Ivana Ljubić, Siemens, Austria
Elena Marchiori, Free University Amsterdam, The Netherlands
Dirk C. Mattfeld, TU Braunschweig, Germany
Helmut Mayer, University of Salzburg, Austria
Daniel Merkle, University of Leipzig, Germany
Peter Merz, University of Kaiserslautern, Germany
Zbigniew Michalewicz, University of Adelaide, Australia
Martin Middendorf, University of Leipzig, Germany
Pablo Moscato, University of Newcastle, Australia
Christine L. Mumford, Cardiff University, UK
Francisco J.B. Pereira, University of Coimbra, Portugal
Jakob Puchinger, Vienna University of Technology, Austria
 Günther R. Raidl, Vienna University of Technology, Austria
Marcus Randall, Bond University, Australia
Colin Reeves, Coventry University, UK
Marc Reimann, ETH Zurich, Switzerland
Franz Rothlauf, University of Mannheim, Germany
Andreas Sandner, SAP AG, Germany
Marc Schoenauer, INRIA, France
Christine Solnon, University of Lyon I, France
Eric Soubeiga, University of Nottingham, UK
Thomas Stützle, Darmstadt University of Technology, Germany
El-ghazali Talbi, University of Lille, France
Edward Tsang, University of Essex, UK
Ingo Wegener, University of Dortmund, Germany
Takeshi Yamada, NTT Communication Science Laboratories, Japan

Sponsoring Institutions

– EvoNet, the Network of Excellence in Evolutionary Computing
– University of Lausanne, Lausanne, Switzerland
Table of Contents

An External Partial Permutations Memory for Ant Colony Optimization
 Adnan Acan ... 1

A Novel Application of Evolutionary Computing in Process Systems Engineering
 Jessica Andrea Carballido, Ignacio Ponzoni, Nélida Beatriz Brignole ... 12

Choosing the Fittest Subset of Low Level Heuristics in a Hyperheuristic Framework
 Konstantin Chakhlevitch, Peter Cowling .. 23

An Attribute Grammar Decoder for the 01 MultiConstrained Knapsack Problem
 Robert Cleary, Michael O’Neill ... 34

EvoGeneS, a New Evolutionary Approach to Graph Generation
 Luigi Pietro Cordella, Claudio De Stefano, Francesco Fontanella, Angelo Marcelli .. 46

On the Application of Evolutionary Algorithms to the Consensus Tree Problem
 Carlos Cotta ... 58

Analyzing Fitness Landscapes for the Optimal Golomb Ruler Problem
 Carlos Cotta, Antonio J. Fernández ... 68

Immune Algorithms with Aging Operators for the String Folding Problem and the Protein Folding Problem
 Vincenzo Cutello, Giuseppe Morelli, Giuseppe Nicosia, Mario Pavone .. 80

Multiobjective Quadratic Assignment Problem Solved by an Explicit Building Block Search Algorithm – MOMGA-IIa
 Richard O. Day, Gary B. Lamont ... 91

Lot-Sizing in a Foundry Using Genetic Algorithm and Repair Functions
 Jerzy Duda ... 101
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation of Distribution Algorithms with Mutation</td>
<td>Hisashi Handa</td>
<td>112</td>
</tr>
<tr>
<td>Property Analysis of Symmetric Travelling Salesman Problem Instances</td>
<td>Jano I. van Hemert</td>
<td>122</td>
</tr>
<tr>
<td>Heuristic Colour Assignment Strategies for Merge Models in Graph Colouring</td>
<td>István Juhos, Attila Tóth, Jano I. van Hemert</td>
<td>132</td>
</tr>
<tr>
<td>Application of the Grouping Genetic Algorithm to University Course Timetabling</td>
<td>Rhydian Lewis, Ben Paechter</td>
<td>144</td>
</tr>
<tr>
<td>Population Training Heuristics</td>
<td>Alexandre C.M. Oliveira, Luiz A.N. Lorena</td>
<td>166</td>
</tr>
<tr>
<td>Scatter Search Particle Filter to Solve the Dynamic Travelling Salesman Problem</td>
<td>Juan José Pantrigo, Abraham Duarte, Ángel Sánchez, Raúl Cabido</td>
<td>177</td>
</tr>
<tr>
<td>The Use of Meta-heuristics to Solve Economic Lot Scheduling Problem</td>
<td>Syed Asif Raza, Ali Akgunduz</td>
<td>190</td>
</tr>
<tr>
<td>Making the Edge-Set Encoding Fly by Controlling the Bias of Its Crossover Operator</td>
<td>Franz Rothlauf, Carsten Tzschoppe</td>
<td>202</td>
</tr>
<tr>
<td>Ant Algorithm for the Graph Matching Problem</td>
<td>Olfah Sammoud, Christine Solnon, Khaled Ghédira</td>
<td>213</td>
</tr>
<tr>
<td>An Adaptive Genetic Algorithm for the Minimal Switching Graph Problem</td>
<td>Maolin Tang</td>
<td>224</td>
</tr>
<tr>
<td>An Improved Simulated Annealing Method for the Combinatorial Sub-problem of the Profit-Based Unit Commitment Problem</td>
<td>T. Aruldoss Albert Victoire, A. Ebenezer Jeyakumar</td>
<td>234</td>
</tr>
</tbody>
</table>
A New Hybrid GA/SA Algorithm for the Job Shop Scheduling Problem
Chaoyong Zhang, Peigen Li, Yunqing Rao, Shuxia Li 246

An Agent Model for Binary Constraint Satisfaction Problems
Weicai Zhong, Jing Liu, Licheng Jiao 260

Author Index ... 271