Graph-Based Representations in Pattern Recognition

5th IAPR International Workshop, GbRPR 2005
Poitiers, France, April 11-13, 2005
Proceedings
Preface

Many vision problems have to deal with different entities (regions, lines, line junctions, etc.) and their relationships. These entities together with their relationships may be encoded using graphs or hypergraphs. The structural information encoded by graphs allows computer vision algorithms to address both the features of the different entities and the structural or topological relationships between them. Moreover, turning a computer vision problem into a graph problem allows one to access the full arsenal of graph algorithms developed in computer science.

The Technical Committee (TC15, http://www.iapr.org/tcs.html) of the IAPR (International Association for Pattern Recognition) has been funded in order to federate and to encourage research work in these fields. Among its activities, TC15 encourages the organization of special graph sessions at many computer vision conferences and organizes the biennial workshop GbR. While being designed within a specific framework, the graph algorithms developed for computer vision and pattern recognition tasks often share constraints and goals with those developed in other research fields such as data mining, robotics and discrete geometry. The TC15 community is thus not closed in its research fields but on the contrary is open to interchanges with other groups/communities. Within this framework, the TC15 community decided to organize the fifth edition of its workshop jointly with the international conference Discrete Geometry for Computer Imagery (DGCI) organized by TC18 of the IAPR. Indeed, within the pattern recognition field, many graph-based algorithms are used to analyze the structures of the underlying objects. On the other hand, many algorithms of discrete geometry aim at finding the structures of unstructured sets of pixels or voxels. From this point of view, both communities aim at studying the structures of discrete objects. Both conferences were held in Poitiers, during the same week, with a common session on Wednesday 13th of April.

This volume contains the papers presented at the 5th Workshop on Graph-Based Representations in Pattern Recognition (GbR) organized by the IAPR TC15. The workshop was held at the University of Poitiers, France during April 11–13, 2005. The previous workshops in the series were held in Lyon, France (1997), Haindorf, Austria (1999) [3], Ischia, Italy (2001) [2], and York, UK (2003) [1].

The papers presented during this workshop, while all based on graphs, cover a wide range of research fields related to image processing and understanding. Indeed, one paper presented by Alain Bretto and Luc Gillibert uses graphs for low image processing such as noise attenuation and edge detection. Then several papers present several segmentation methods based on graphs together with improved graph data structures to encode fine properties of the partitions. Graphs or hierarchical graph data structures may thus be used to encode fine propert-
ties of the image's content. However, graphs may also be used to encode shape information. Many papers presented during this workshop encode a shape using either its skeleton or a set of points characterizing it. Given a graph describing an object (a shape, an image, a graphic, etc.) the next step consists of determining a measure of similarity between these graphs in order to derive a similarity measure between the underlying objects. Several papers devoted to graph matching attack this difficult problem using either exact or inexact algorithms. Algorithms based on graph kernels and the heat kernel equations provide alternative and interesting approaches to graph matching. Graph-matching algorithms may be pushed one step further by studying not only the matching between two graphs but also the classification of a set of graphs or the analysis of a sequence of graphs. Several papers presented during the workshop present novel and interesting ideas on these topics.

The papers presented here have all been reviewed by two reviewers and revised by their authors. The 50 papers submitted to the GbR were written by authors coming from 20 different countries located on five different continents. Based on these 50 submitted papers the Program Committee selected 18 of them as full papers and 17 of them as posters. We would therefore like to thank the members of the Program Committee and the additional reviewers for their help in ensuring that the papers were given a thorough and critical evaluation. We would also like to thank our sponsors who provided the material and financial help for the organization of this workshop.

April 2005

Luc Brun

Mario Vento

References

Organization

Program Co-chairs

Luc Brun
GREYCENSICAEN
6 Boulevard du Maréchal Juin
14050 Caen
France

Mario Vento
MIVIA Lab - Università di Salerno
Dipart. di Ing. Dell’Informazione ed
Ingegneria Elettrica
Università di Salerno
Via Ponte Don Melillo,
1 Fisciano (SA) Italy

Program Committee

Horst Bunke
Terry Caelli
Guillaume Damiand
Luigi Pietro Cordella
Jean Michel Jolion
Walter Kropatsch
Marcello Pellillo

University of Bern, Switzerland
University of Alberta, Edmonton, Canada
Université de Poitiers, France
Università di Napoli, Naples, Italy
INSA Lyon, Lyon, France
Vienna Univ. of Technology, Vienna, Austria
Università Ca’ Foscari di Venezia, Venice, Italy

Referees

I. Bloch (France) A. Braquelaire (France) L. Brun (France) H. Bunke (Switzerland) T. Caelli (USA) L.P. Cordella (Italy) G. Damiand (France) P. Foggia (Italy)

F. Fontanella (Italy) E.R. Hancock (UK) C. Irniger (Switzerland) J.-M. Jolion (France) W.G. Kropatsch (Austria) O. Lezoray (France) M. Neuhaus

M. Pellillo (Italy) M. Revenu (France) C. Sansone (Italy) C. De Stefano (Italy) M. Vento (Italy)

Sponsoring Institutions

ENSICAEN - 6 Bd. Maréchal Juin, 14050 Caen, France
GREYCENSICAEN - 6 Bd. Maréchal Juin, 14050 Caen, France
Université de Poitiers, France
Table of Contents

Graph Representations

Hypergraph-Based Image Representation
Alain Bretto, Luc Gillibert .. 1

Vectorized Image Segmentation via Trixel Agglomeration
Lakshman Prasad, Alexei N. Skourikhine 12

Graph Transformation in Document Image Analysis: Approaches and Challenges
Dorothea Blostein .. 23

Graphical Knowledge Management in Graphics Recognition Systems
Mathieu Delalandre, Eric Trupin, Jacques Labiche, Jean-Marc Ogier .. 35

A Vascular Network Growth Estimation Algorithm Using Random Graphs
Sung-Hyuk Cha, Michael L. Gargano, Louis V. Quintas, Eric M. Wahl .. 45

Graphs and Linear Representations

A Linear Generative Model for Graph Structure
Bin Luo, Richard C. Wilson, Edwin R. Hancock 54

Graph Seriation Using Semi-definite Programming
Hang Yu, Edwin R. Hancock ... 63

Comparing String Representations and Distances in a Natural Images Classification Task
Julien Ros, Christophe Laurent, Jean-Michel Jolion, Isabelle Simand .. 72

Reduction Strings: A Representation of Symbolic Hierarchical Graphs Suitable for Learning
Mickaël Melki, Jean-Michel Jolion .. 82
Combinatorial Maps

Representing and Segmenting 2D Images by Means of Planar Maps with Discrete Embeddings: From Model to Applications
Achille Braquelaire ... 92

Inside and Outside Within Combinatorial Pyramids
Luc Brun, Walter Kropatsch .. 122

The GEOMap: A Unified Representation for Topology and Geometry
Hans Meine, Ullrich Köthe .. 132

Pyramids of n-Dimensional Generalized Maps
Carine Grasset-Simon, Guillaume Damiand, Pascal Lienhardt 142

Matching

Towards Unitary Representations for Graph Matching
David Emms, Simone Severini, Richard C. Wilson,
Edwin R. Hancock ... 153

A Direct Algorithm to Find a Largest Common Connected Induced Subgraph of Two Graphs
Bertrand Cuissart, Jean-Jacques Hébrard 162

Reactive Tabu Search for Measuring Graph Similarity
Sébastien Sorlin, Christine Solnon .. 172

Tree Matching Applied to Vascular System
Arnaud Charnoz, Vincent Agnus, Grégoire Malandain, Luc Soler,
Mohamed Tajine ... 183

Hierarchical Graph Abstraction and Matching

A Graph-Based, Multi-resolution Algorithm for Tracking Objects in Presence of Occlusions
Donatello Conte, Pasquale Foggia, Jean-Michel Jolion, Mario Vento ... 193

Coarse-to-Fine Object Recognition Using Shock Graphs
Aurelie Bataille, Sven Dickinson .. 203

Adaptive Pyramid and Semantic Graph: Knowledge Driven Segmentation
Aline Deruyver, Yann Hodé, Eric Leammer, Jean-Michel Jolion 213
A Graph-Based Concept for Spatiotemporal Information in Cognitive Vision
Adrian Ion, Yll Haxhimusa, Walter G. Kropatsch 223

Inexact Graph Matching

Approximating the Problem, not the Solution: An Alternative View of Point Set Matching
Tibério S. Caetano, Terry Caelli 233

Defining Consistency to Detect Change Using Inexact Graph Matching
Sidharta Gautama, Werner Goeman, Johan D’Haeyer 243

Asymmetric Inexact Matching of Spatially-Attributed Graphs
Yang Li, Dorothea Blostein, Purang Abolmaesumi 253

From Exact to Approximate Maximum Common Subgraph
Simone Marini, Michela Spagnuolo, Bianca Falcidieno 263

Learning

Automatic Learning of Structural Models of Cartographic Objects
Güray Erus, Nicolas Loménie ... 273

An Experimental Comparison of Fingerprint Classification Methods Using Graphs
Alessandra Serrau, Gian Luca Marcialis, Horst Bunke, Fabio Roli ... 281

Collaboration Between Statistical and Structural Approaches for Old Handwritten Characters Recognition
Denis Arrivault, Noël Richard, Christine Fernandez-Maloigne, Philippe Bouyer ... 291

Graph Sequences

Decision Trees for Error-Tolerant Graph Database Filtering
Christophe Irniger, Horst Bunke .. 301

Recovery of Missing Information in Graph Sequences
Horst Bunke, Peter Dickinson, Miro Kraetzl 312

Tree-Based Tracking of Temporal Image
Tomoya Sakai, Atsushi Imiya, Heitoh Zen 322
Graph Kernels

Protein Classification with Kernelized Softassign
Miguel Angel Lozano, Francisco Escolano ... 332

Local Entropic Graphs for Globally-Consistent Graph Matching
Miguel Angel Lozano, Francisco Escolano ... 342

Edit Distance Based Kernel Functions for Attributed Graph Matching
Michel Neuhaus, Horst Bunke ... 352

Graphs and Heat Kernels

A Robust Graph Partition Method from the Path-Weighted Adjacency Matrix
Huajun Qiu, Edwin R. Hancock .. 362

Recent Results on Heat Kernel Embedding of Graphs
Xiao Bai, Edwin R. Hancock ... 373

Author Index ... 383