Preface

“What joy to discern the minute in infinity, the vast to perceive in the small, what divinity!”

Jacob Bernoulli (1654-1705) in Ars Conjectandi (1713)

We are proud to present to you the proceedings of the Sixth International Conference on Cellular Automata for Research and Industry (ACRI 2004), held in Amsterdam, The Netherlands on October 25–27, 2004.

Since the first conference in Italy, ACRI, which is held biennially, has become the premier conference in the field of cellular automata in Europe and beyond, and is still growing in quality and size.

This year’s theme was “From Individual to Collective Behavior”, emphasizing the capability of Cellular Automata to simulate macroscopic processes from individual, local interactions. Cellular Automata, in spite of their apparent simplicity, represent a very powerful approach to studying spatio-temporal systems in which complex phenomena build up out of many simple local interactions. In the words of Richard Feynman in the Character of Physical Law (1982), “Nature uses only the longest threads to weave her patterns, so each small piece of her fabric reveals the organization of the entire tapestry”.

John von Neumann, who is recognized as the father of cellular automata, would have been 100 years old in 2004. ACRI 2004 wanted to commemorate this date by inviting researchers to submit contributions related to von Neumann’s work or to the emergence of organization in systems in which collaboration between components wins over the individual behavior.

In view of this commemoration we had two very inspiring memorial plenary lectures on the first day: “Von Neumann’s Century: Too many souls!” by Prof. Tomasso Toffoli and “John von Neumann and Cellular Automata” by Prof. Roland Vollmar.

Other invited lectures that were presented in the plenary sessions during the three meeting days were: “Pattern Discovery and Automated Theory Building” by Prof. James P. Crutchfield, “Studying Biological Development and Evolution with Multilevel Particle Systems” by Prof. Paulien Hogeweg, “Cell Scale Simulations, the Neglected Link Between Microscopic and Continuum Modeling” by Prof. James A. Glazier, “From Cellular Automata to Wetware” by Prof. Andrew Adamatzky, and “Structural Design and Optimization Using Cellular Automata” by Prof. Zafer Gürdal.

We would like to express our sincere thanks to the invited speakers who delivered such inspiring lectures at ACRI 2004.

The conference was organized along the following tracks:

– Methods and Theory
– Evolved CA
– Traffic, Networks and Communication
This volume contains peer reviewed original work on the theory and application of Cellular Automata. After peer review by three experts in the field, 40% of the 150 papers submitted were selected for oral presentation and 30% for poster presentation. A total of 30% of the submitted papers were rejected.

This conference would not have been possible without the support of many people and organizations that helped in different ways to make it a success.

First of all we would like to thank the authors for making the effort to submit so many high-quality papers. We thank the Program Committee for their excellent job in reviewing the submissions and thus guaranteeing the quality of the conference and the proceedings. We thank Liesbeth Otte and the conference office of the University of Amsterdam for their practical assistance and support. Many thanks go to Coco van der Hoeven for her secretarial work. Dick van Albada, Berry Vermolen and Jiangjun Cui are acknowledged for their punctuality in preparing the draft of the proceedings.

We thank our sponsors for their financial support: the board of the University of Amsterdam, the Science Faculty and the Institute for Informatics. Finally we thank the Dutch Science Foundation NWO, section Exact-Sciences, as well as the section Computational Life Sciences.

September 2004

Peter Sloot
Bastien Chopard
Alfons Hoekstra
Organization

Scientific Committee

Peter M.A. Sloot, General Chair (University of Amsterdam, The Netherlands)
Bastien Chopard, General Co-Chair (University of Geneva, Switzerland)
Alfons G. Hoekstra, Program Committee Chair (University of Amsterdam, The Netherlands)

Local Organizing Committee

Liesbeth Otte (University of Amsterdam, The Netherlands)
Dick van Albada (University of Amsterdam, The Netherlands)
Berry Vermolen (University of Amsterdam, The Netherlands)
Jiangjiun Cui (University of Amsterdam, The Netherlands)

Program Committee

Albuquerque, Paul, University of Geneva, Switzerland
Bagnoli, Franco, University of Florence, Italy
Ballegooijen, Marijn van, Amsterdam, The Netherlands
Bandini, Stefania, University of Milano-Bicocca, Milan, Italy
Bandman, Olga, Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk, Russia
Berec, Ludek, Ceske Budejovice, Czech Republic
Cattaneo, Gianpiero, University of Milano-Bicocca, Milan, Italy
Chopard, Bastien, University of Geneva, Switzerland
Emde Boas, Peter van, University of Amsterdam, The Netherlands
Deutsch, Andreas, Technical University of Dresden, Germany
Di Gregorio, Salvatore, University of Calabria, Italy
Dupuis, Alexandre, Oxford University, UK
Dzwinel, Witold, AGH University of Science and Technology, Krakow, Poland
El Yacoubi, Samira, University of Perpignan, France
Green, Frederic, Clark University, USA
Haeseler, Friedrich von, KU Leuven, Belgium
Hoekstra, Alfons (Chair), University of Amsterdam, The Netherlands
Kaandorp, Jaap, University of Amsterdam, The Netherlands
Legendi, Tamas, Hungary
Manoussaki, Daphne, Hania, Greece
Marconi, Stephane, University of Geneva, Switzerland
Mauri, Giancarlo, University of Milano-Bicocca, Milan, Italy
Meyer-Hermann, Michael, Dresden, Germany
Morishita, Shin, Yokohama National University, Japan
Nishinari, Katsuhiro, Ryukoku University, Shiga, Japan
Plapp, Mathis, Palaiseau, France
Serra, Roberto, Centro Ricerche e Servizi Ambientali Fenice, Italy
Sipper, Moshe, Ben-Gurion University, Beer-Sheva, Israel
Sloot, Peter, University of Amsterdam, The Netherlands
Spezzano, Giandomenico, ICAR-CNR, Italy
Talia, Domenico, University of Calabria, Italy
Tempesti, Gianluca, EPFL, Lausanne, Switzerland
Tomassini, Marco, University of Lausanne, Switzerland
Torenvliet, Leen, University of Amsterdam, The Netherlands
Trautteur, Giuseppe, University of Naples Federico II, Naples, Italy
Umeo, Hiroshi, Univ. of Osaka Electro-Communication, Japan
Vollmar, Roland, University of Karlsruhe, Germany
Worsch, Thomas, University of Karlsruhe, Germany
Zomaya, Albert, The University of Sydney, Australia

Sponsoring Organizations

The University of Amsterdam, The Netherlands
The Dutch Science Foundation NWO, section Exact Sciences and section Computational Life Sciences
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Thumb Algorithm and von Neumann Universal Constructor</td>
<td>1</td>
</tr>
<tr>
<td>Joël Rossier, Enrico Petraglio, André Stauffer, Gianluca Tempesti</td>
<td></td>
</tr>
<tr>
<td>Elementary Probabilistic Cellular Automata with Memory in Cells</td>
<td>11</td>
</tr>
<tr>
<td>Ramón Alonso-Sanz, Margarita Martín</td>
<td></td>
</tr>
<tr>
<td>Universal Construction on Self-Timed Cellular Automata</td>
<td>21</td>
</tr>
<tr>
<td>Yousuke Takada, Teijiro Isokawa, Ferdinand Peper, Nobuyuki Matsui</td>
<td></td>
</tr>
<tr>
<td>Computing Phase Shifts of Maximum-Length 90/150 Cellular Automata</td>
<td>31</td>
</tr>
<tr>
<td>Sung-Jin Cho, Un-Sook Choi, Yoon-Hee Hwang, Han-Doo Kim, Yong-Soo Pyo, Kwang-Seok Kim, Seong-Hun Heo</td>
<td></td>
</tr>
<tr>
<td>Cellular Automata Evolution for Distributed Data Mining</td>
<td>40</td>
</tr>
<tr>
<td>Pradipta Maji, Biplab K. Sikdar, P. Pal Chaudhuri</td>
<td></td>
</tr>
<tr>
<td>A Comparative Study of Optimum-Time Synchronization Algorithms for One-Dimensional Cellular Automata – A Survey –</td>
<td>50</td>
</tr>
<tr>
<td>Hiroshi Umeo, Masaya Hisaoka, Takashi Sogabe</td>
<td></td>
</tr>
<tr>
<td>A Cellular Automaton Model for an Immune-Derived Search Algorithm</td>
<td>61</td>
</tr>
<tr>
<td>Niloy Ganguly, Andreas Deutsch</td>
<td></td>
</tr>
<tr>
<td>Randomized Computation with Cellular Automata</td>
<td>71</td>
</tr>
<tr>
<td>Bastien Chopard, Marco Tomassini</td>
<td></td>
</tr>
<tr>
<td>Applying Cell-DEVS in 3D Free-Form Shape Modeling</td>
<td>81</td>
</tr>
<tr>
<td>Pengfei Wu, Xiuping Wu, Gabriel Wainer</td>
<td></td>
</tr>
<tr>
<td>Universality of Hexagonal Asynchronous Totalistic Cellular Automata</td>
<td>91</td>
</tr>
<tr>
<td>Susumu Adachi, Ferdinand Peper, Jia Lee</td>
<td></td>
</tr>
<tr>
<td>Efficient Simulation of CA with Few Activities</td>
<td>101</td>
</tr>
<tr>
<td>Richard Walter, Thomas Worsch</td>
<td></td>
</tr>
<tr>
<td>Perturbing the Topology of the Game of Life Increases</td>
<td>111</td>
</tr>
<tr>
<td>Its Robustness to Asynchrony</td>
<td></td>
</tr>
<tr>
<td>Nazim Fatès, Michel Morvan</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Local Information in One-Dimensional Cellular Automata</td>
<td>121</td>
</tr>
<tr>
<td>Torbjørn Helvik, Kristian Lindgren, Mats G. Nordahl</td>
<td></td>
</tr>
<tr>
<td>Diffusion Controlled Cellular Automaton</td>
<td>131</td>
</tr>
<tr>
<td>Performing Mesh Partitioning</td>
<td></td>
</tr>
<tr>
<td>Jiří Kroc</td>
<td></td>
</tr>
<tr>
<td>Cellular Automata with Majority Rule on Evolving Network</td>
<td>141</td>
</tr>
<tr>
<td>Danuta Makowiec</td>
<td></td>
</tr>
<tr>
<td>Searching for Pattern-Forming Asynchronous Cellular Automata –</td>
<td>151</td>
</tr>
<tr>
<td>An Evolutionary Approach</td>
<td></td>
</tr>
<tr>
<td>Tomoaki Suzudo</td>
<td></td>
</tr>
<tr>
<td>Heredity, Complexity, and Surprise: Embedded Self-Replication</td>
<td>161</td>
</tr>
<tr>
<td>and Evolution in CA</td>
<td></td>
</tr>
<tr>
<td>Chris Salzberg, Hiroki Sayama</td>
<td></td>
</tr>
<tr>
<td>Unlearning Phenomena in Co-evolution</td>
<td>172</td>
</tr>
<tr>
<td>of Non-uniform Cellular Automata</td>
<td></td>
</tr>
<tr>
<td>Boaz Leskes, Peter M.A. Sloot</td>
<td></td>
</tr>
<tr>
<td>Evolving Transition Rules for Multi Dimensional Cellular Automata</td>
<td>182</td>
</tr>
<tr>
<td>Ron Breukelaar, Thomas Bäck</td>
<td></td>
</tr>
<tr>
<td>Traffic of Ants on a Trail: A Stochastic Modelling and Zero Range Process</td>
<td>192</td>
</tr>
<tr>
<td>Katsuhiro Nishinari, Andreas Schadschneider, Debashish Chowdhury</td>
<td></td>
</tr>
<tr>
<td>Cellular Automata and Roundabout Traffic Simulation</td>
<td>202</td>
</tr>
<tr>
<td>Enrico G. Campari, Giuseppe Levi, Vittorio Maniezzo</td>
<td></td>
</tr>
<tr>
<td>Acquisition of Local Neighbor Rules in the Simulation</td>
<td>211</td>
</tr>
<tr>
<td>of Pedestrian Flow by Cellular Automata</td>
<td></td>
</tr>
<tr>
<td>Katsutoshi Narimatsu, Toshihiko Shiraishi, Shin Morishita</td>
<td></td>
</tr>
<tr>
<td>Two-Phase Automaton for Porous Structure and Combustion Simulation</td>
<td>220</td>
</tr>
<tr>
<td>Kazuhiro Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Approximation of Continuous Media Models for Granular Systems</td>
<td>230</td>
</tr>
<tr>
<td>Using Cellular Automata</td>
<td></td>
</tr>
<tr>
<td>Marta Pla-Castells, I. García, R.J. Martínez</td>
<td></td>
</tr>
<tr>
<td>A Topological Framework for the Specification and the Simulation</td>
<td>238</td>
</tr>
<tr>
<td>of Discrete Dynamical Systems</td>
<td></td>
</tr>
<tr>
<td>Antoine Spicher, Olivier Michel, Jean-Louis Giavitto</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>A Basic Qualitative CA Based Model of a Frustrated Linear</td>
<td>248</td>
</tr>
<tr>
<td>Josephson Junction Array (JJA)</td>
<td></td>
</tr>
<tr>
<td>Claudia R. Calidonna, Adele Naddeo</td>
<td></td>
</tr>
<tr>
<td>Cellular Automata Based Encompression Technology for Voice Data</td>
<td>258</td>
</tr>
<tr>
<td>Chandrama Shaw, Pradipta Maji, Sourav Saha, Biplab K. Sikdar, S. Roy, P. Pal Chaudhuri</td>
<td></td>
</tr>
<tr>
<td>A MCA Motion-Planner for Mobile Robots with Generic Shapes and Kinematics on Variable Terrains</td>
<td>268</td>
</tr>
<tr>
<td>Fabio M. Marchese</td>
<td></td>
</tr>
<tr>
<td>Simulation of the Dynamics of Pulsed Pumped Lasers Based on Cellular Automata</td>
<td>278</td>
</tr>
<tr>
<td>J.L. Guisado, F. Jiménez-Morales, J.M. Guerra</td>
<td></td>
</tr>
<tr>
<td>Surface Roughening in Homoepticaxial Growth: A Lattice Gas Cellular Automaton Model</td>
<td>286</td>
</tr>
<tr>
<td>A. Gerisch, A.T. Lawniczak, R.A. Budiman, H. Fukš, H.E. Ruda</td>
<td></td>
</tr>
<tr>
<td>Ant Colony System for JSP</td>
<td>296</td>
</tr>
<tr>
<td>Urszula Boryczka</td>
<td></td>
</tr>
<tr>
<td>Using de Bruijn Diagrams to Analyze 1d Cellular Automata Traffic Models</td>
<td>306</td>
</tr>
<tr>
<td>René Rodríguez Zamora, Sergio Víctor Chapa Vergara</td>
<td></td>
</tr>
<tr>
<td>Using Cellular Automata to Determine Bounds for Measuring the Efficiency of Broadcast Algorithms in Highly Mobile Ad Hoc Networks</td>
<td>316</td>
</tr>
<tr>
<td>Michael Kirkpatrick, Frances Van Scoy</td>
<td></td>
</tr>
<tr>
<td>From Individual to Collective Behaviour in CA Like Models of Data Communication Networks</td>
<td>325</td>
</tr>
<tr>
<td>A.T. Lawniczak, K.P. Maxie, A. Gerisch</td>
<td></td>
</tr>
<tr>
<td>Agent-Driven Resource Optimization in User Networks: A Game Theoretical Approach</td>
<td>335</td>
</tr>
<tr>
<td>J.C. Burguillo-Rial, F.J. González-Castaño, E. Costa-Montenegro, J. Vales-Alonso</td>
<td></td>
</tr>
<tr>
<td>Lattice Boltzmann Modeling of Injection Moulding Process</td>
<td>345</td>
</tr>
<tr>
<td>Jonas Latt, Guy Courbebaisse, Bastien Chopard, Jean Luc Falcone</td>
<td></td>
</tr>
</tbody>
</table>
Cellular Automata Diffusion-Kinetic Model of Dendritic Growth 355
 Andriy Burbelko, Edward Fras, Wojciech Kapturkiewicz, Ewa Olejnik

Cellular Automata with Rare Events: Resolution of an Outstanding Problem in the Bootstrap Percolation Model 365
 Paolo De Gregorio, Aonghus Lawlor, Phil Bradley, Kenneth A. Dawson

Plastic Deformation Development in Polycrystals Based on the Cellular Automata and Relaxation Element Method 375
 G.V. Lasko, Y.Y. Deryugin, S. Schmauder

Predicting Wildfire Spreading Through a Hexagonal Cellular Automata Model 385
 Giuseppe A. Trunfio

Modelling Wildfire Dynamics via Interacting Automata 395
 Adam Dunn, George Milne

Sympatric Speciation Through Assortative Mating in a Long-Range Cellular Automaton 405
 Franco Bagnoli, Carlo Guardiani

A Cellular “Blocks” Model for Large Surface Flows and Applications to Lava Flows 415
 Maria Vittoria Avolio, Salvatore Di Gregorio

Cell-Oriented Modeling of In Vitro Capillary Development 425
 Roeland M.H. Merks, Stuart A. Newman, James A. Glazier

Neuropercolation: A Random Cellular Automata Approach to Spatio-temporal Neurodynamics 435
 Robert Kozma, Marko Puljic, Paul Balister, Bela Bollobas, Walter J. Freeman

The Use of Hybrid Cellular Automaton Models for Improving Cancer Therapy 444
 B. Ribba, T. Alarcón, K. Marron, P.K. Maini, Z. Agur

A Stochastic Model of the Effector T Cell Lifecycle 454
 John Burns, Heather J. Ruskin

A Cellular Automata Model of Population Infected by Periodic Plague 464
 Witold Dzwiel

Mining Ecological Data with Cellular Automata 474
 Alexander Campbell, Binh Pham, Yu-Chu Tian
Reconstructing Forest Savanna Dynamics in Africa
Using a Cellular Automata Model, FORSAT 484
Charly Favier, Marc A. Dubois

Learning What to Eat: Studying Inter-relations Between Learning,
Grouping, and Environmental Conditions in an Artificial World........ 492
Daniel J. van der Post, Paulien Hogeweg

Cellular Automata in Ecological and Ecohydraulics Modelling 502
Arthur Mynett, Qiuwen Chen

Chaos in a Simple Cellular Automaton Model of a Uniform Society..... 513
Franco Bagnoli, Fabio Franci, Raúl Rechtman

Replication of Spatio-temporal Land Use Patterns at Three Levels
of Aggregation by an Urban Cellular Automata......................... 523
Charles Dietzel, Keith C. Clarke

Perturbation in Genetic Regulatory Networks:
Simulation and Experiments... 533
A. Semeria, M. Villani, R. Serra, S.A. Kauffman

A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis
of the Vertebrate Limb ... 543
R. Chaturvedi, C. Huang, J. A. Izaguirre, S. A. Newman,
J. A. Glazier, M. Alber

A Cellular Automata Model of Early T Cell Recognition............... 553
Arancha Casal, Cenk Sumen, Tim Reddy, Mark Alber,
Peter P. Lee

Simulation of Cell Population Dynamics
Using 3-D Cellular Automata.. 561
Belgacem Ben Youssef

Synchronization of Protein Motors Modeled
by Asynchronous Cellular Automata 571
Ferdinand Peper, Kazuhiro Oiwa, Susumu Adachi,
Chikako Shingyoji, Jia Lee

Hybrid Techniques for Pedestrian Simulations 581
Christian Gloor, Pascal Stucki, Kai Nagel

A CA Approach to Study Complex Dynamics in Asset Markets........ 591
Stefania Bandini, Sara Manzoni, Ahmad Naimzada, Giulio Pavesi

Modeling the Effect of Leadership on Crowd Flow Dynamics.......... 601
François Aubé, Robert Shield
Cellular Automata Application to the Linearization of Stream Cipher Generators ... 612
 Amparo Fuster-Sabater, Dolores de la Guía-Martínez

Agents in Housing Market. A Model for Siena Historical Centre 622
 Francesco Lapiana, Giuliano Bianchi, Giovanni Rabino

On the Omni-directional Emergence of Form in Computation 632
 J.F. Nystrom

A Flexible Automata Model for Disease Simulation 642
 Shih Ching Fu, George Milne

A Novel Artificial Life Ecosystem Environment Model 650
 Zhengyou Xia, Yichuan Jiang

Cellular Automata Evolution for Pattern Classification 660
 Pradipta Maji, Biplab K. Sikdar, P. Pal Chaudhuri

Simulation and Experimental Investigation
of Two Dimensional Cracks Propagation in Ceramic Materials 670
 Jacek Bomba, Julita Czopor, Marek Rybczuk

Cellular Automata in the Hyperbolic Plane: Proposal
for a New Environment ... 678
 Kamel Chelghoum, Maurice Margenstern, Benoît Martin,
 Isabelle Pecci

Algebraic Properties of Cellular Automata:
The Basis for Composition Technique 688
 Olga Bandman

DSCA Implementation of 3D Self-Replicating Structures 698
 André Stauffer, Daniel Mange, Enrico Petraglio, Fabien Vannel

Calculation of the Critical Point for Two-Layer Ising
and Potts Models Using Cellular Automata 709
 Yazdan Asgari, Mehrdad Ghaemi, Mohammad Ghasem Mahjani

Directed Ligand Passage over the Surface
of Diffusion-Controlled Enzymes: A Cellular Automata Model 719
 Mehrdad Ghaemi, Nasrollah Rezaei-Ghaleh,
 Mohammad-Nabi Sarbolouki

An Evolutionary Approach for Modelling Lava Flows
Through Cellular Automata ... 725
 William Spataro, Donato D’Ambrosio, Rocco Rongo,
 Giuseppe A. Trunfio
CAME&L - Cellular Automata Modeling Environment & Library 735
 Lev Naumov

SAT-Based Analysis of Cellular Automata 745
 Massimo D’Antonio, Giorgio Delzanno

The Kernel Hopfield Memory Network 755
 Cristina García, José Alí Moreno

Timescale Separated Pollination-Colonisation Models 765
 J.A. Stewart-Cox, N.F. Britton, M. Mogie

Characterization of a Class
of Complemented Group Cellular Automata 775
 Debdeep Mukhopadhyay, Dipanwita Roy Chowdhury

Block Encryption Using Reversible Cellular Automata 785
 Marcin Seredynski, Pascal Bouvry

Cellular Model of Complex Porous Media Application
 to Permeability Determination ... 793
 André Chambarel, Hervé Bolvin, Evelyne Ferry

Improved Cell-DEVS Model Definition in CD++ 803
 Alejandro López, Gabriel Wainer

Characterization of Reachable/Nonreachable
Cellular Automata States .. 813
 Sukanta Das, Biplab K. Sikdar, P. Pal Chaudhuri

Building Classifier Cellular Automata 823
 Peter Kokol, Petra Povalej, Mitja Lenic, Gregor Štiglic

On Evolutionary 3-Person Prisoner’s Dilemma Games on 2-D Lattice ... 831
 László Gulyás, Tadeusz Platkowski

Optimizing the Behavior of a Moving Creature in Software
 and in Hardware .. 841
 Mathias Halbach, Wolfgang Heenes, Rolf Hoffmann, Jan Tisje

A Generalized Rapid Development Environment
 for Cellular Automata Based Simulations 851
 Ivan Blecic, Arnaldo Cecchini, Giuseppe A. Trunfio

Characterizing Configuration Spaces
 of Simple Threshold Cellular Automata 861
 Predrag T. Tosic, Gul A. Agha
Lattice Boltzmann Approach to Incompressible Fluidynamics
Dimensional Investigation and Poiseuille Test 871
 Gianpiero Cattaneo, Alberto Dennunzio, Fabio Farina

Author Index .. 881