Drugs and Poisons in Humans
A Handbook of Practical Analysis
It was with great pleasure that I accepted the invitation to write the foreword for *Drugs and Poisons in Humans. A Handbook of Practical Analysis*. Dr. Osamu Suzuki and Dr. Mikio Yashiki, two outstanding Japanese scientists, first published the Handbook in Japanese in 2002. Specialists throughout Japan contributed analytical methods for a wide variety of therapeutic and illicit drugs, pesticides, and natural toxins and alkaloids. In fact, rarely has such a wide spectrum of analytes and metabolites been addressed within a single reference manual.

At the beginning of the book, general topics are addressed, including instructions on handling biological materials, measurement of drugs in alternative specimens, and guidance on resolving analytical problems that may occur. There are discussions of extraction modalities and detection methodologies and how to select these appropriately based on the physiochemical characteristics of the drug. Analysis of specific classes of drugs and relevant metabolites are covered in subsequent chapters. Clinical, analytical and forensic toxicology and clinical chemistry laboratories will find the volume informative and useful. Toxicologists are often faced with developing methods for new drugs and metabolites with little information available in the literature. This book provides a great starting point for method development providing procedures that have been utilized in real life situations. In addition, toxicologists developing new methodologies may use this volume as a guide to selecting the most appropriate instrumentation to handle the breadth of their analytical workload.

One of the most valuable aspects of the Handbook is the inclusion of specific case studies. Useful also are the discussions on suggested analyte concentration ranges and troubleshooting tips. The 2002 version of the Handbook in Japanese was judged to be highly valuable and led to the production of an English version. This Handbook also has been updated to include additional methods and procedures for this edition.

Despite the value of these methodologies, it is essential for laboratorians to validate fully a method within their own laboratory. Differences in instrumentation, sample size, extraction procedures (such as different solid-phase extraction columns) and experience level of personnel may vary markedly between laboratories. Therefore, these methods provide help and guidance in initiating a new analysis, but do not take the place of independently determining limits of detection, quantification and linearity, and the selectivity and precision of the assay in their own hands. Internal standardization is always the preferred approach, although use of external standard addition may be necessary with difficult matrices, such as decomposed postmortem specimens. Quality assurance and quality control procedures are essential components of accurate and reliable methods and should be included in the analysis of each batch of specimens. Quality control samples should span the linear range of the assay. The issue of method validation cannot be emphasized too strongly and is necessary for the accurate application of these diverse analytical methods.
Dr. Suzuki and Dr. Watanabe have gathered an extensive array of methods for the measurement of xenobiotics and metabolites in biological matrices. *Drugs and Poisons in Humans. A Handbook of Practical Analysis* will be a well-used reference for toxicology laboratorians and will help guide assay development.

Marilyn A. Huestis, Ph.D.
Acting Chief, Chemistry and Drug Metabolism
Intramural Research Program, National Institute on Drug Abuse
National Institutes of Health, Washington, D.C., USA
and
President, The International Association of Forensic Toxicologists (TIAFT)
The readers of this book will immediately realize that all authors are Japanese scientists; this is the English translation of a book which was published in Japanese by Jiho, Inc., Tokyo in 2002. Upon translation, the Editors added five new chapters to the previous 67 chapters in view of international occurrences of poisoning by drugs and poisons.

The most important aim of this book is to provide the most reliable and reproducible methods for analysis of drugs and poisons; therefore, the newest methods and ones requiring skills have not been adopted. Each chapter has been written by at least one expert currently engaged in the quantitative analysis of each toxin. This book is arranged so precisely that any fresh analytical chemist can start analytical experiments on a drug or a poison in a crude biological matrix, even if the analyst has no experience of analyzing the compound. Special care has been given to clarify the origins (manufacturers) or synthetic methods for chemicals to be used in reproducing the experiments, and also to present detailed procedures for the extraction of a drug or a poison from complicated matrices such as whole blood, tissues and urine.

Compounds causing cases of poisoning will increase and vary according to events in the world; the technology of analytical instruments is also advancing very rapidly. The Editors do not claim that this book covers all compounds to be analyzed and are well aware of the limitations of the book. The Editors hope that this book will be revised according to feedback received in the near future; some groups of drugs and poisons will then be added in a later edition.

The Editors also hope that this book will be widely distributed in the world and be useful for many analysts affiliated to forensic, environmental, clinical and doping control institutions.

The Editors wish to thank the following people for helping to make the present publication of this book possible: Dr. T. Mager and Mr. A. Spencer, Springer-Verlag, Heidelberg, for undertaking the laborious work of the publication; Messrs. T. Araki, D. Kobayashi and S. Hattori, Jiho, Inc., Tokyo, for kindly encouraging us to translate the original Japanese version; Mr. and Mrs. Kouichi Watanabe, the parents of one of the Editors, for typing extensive pages of manuscripts for the translation.

Osamu Suzuki
Kanako Watanabe
Editors
Notes on the use of this book

Contents

This book is composed of 9 chapters of general nature and 63 chapters of specific toxins. In the latter chapters, compounds with high poisoning frequency have been chosen; detailed procedures of analyses have been presented for each compound or each group. The methods mentioned are relatively new and easily reproducible in every chemical laboratory equipped with the standard analytical instruments. In this book, preliminary tests such as color and immunological reactions are almost omitted; most of them are chromatographic ones.

Each chapter on specific toxin is composed of: 1 Introduction; 2 Reagents and their preparation; 3 Instrumental conditions; 4 Procedure; 5 Assessment of the method; 6 Poisoning cases, toxic and fated concentrations; 7 Notes; and 8 References.

Especially, protocols for experimental procedure are headed by small letters of Roman numerals.

For notes, small alphabets are shown on the right shoulder of a corresponding word in the text. For references, Arabic numerals in brackets are shown in the text.

Symbols, units and expressions

Length: 10^{-9} m has been expressed as nm (not mµ); volume: 10^{-6} m³ expressed as mL (not cc); concentration: mol in 1 L volume expressed as M (not mol/L); NMR shift: δ values (not γ values); fraction: for example g/mL (not g mL⁻¹).

In GC analysis, when the initial oven temperature is 50 °C with 1-min hold, followed by its elevation at 5 °C/min up to 150 °C; after 5-min hold at the latter temperature, it is again elevated at 20 °C/min up to 280 °C. These steps of the procedure are simply described as follows.

50 °C (1 min) → 5 °C/min → 150 °C (5 min) → 20 °C/min → 280 °C.
Abbreviations

There are a number of abbreviated words being commonly used in the field of analytical toxicology. The following abbreviated words can be used in the text of this book without explanation.

CI: chemical ionization
CID: collision-induced dissociation
EI: electron impact ionization
FID: flame ionization detector
GC: gas chromatography or its instrument
GC/MS: gas chromatography/mass spectrometry or its instrument
GC/MS/MS: gas chromatography/tandem mass spectrometry or its instrument
HPLC: high-performance liquid chromatography or its instrument
IS: internal standard
LC: liquid chromatography = HPLC or its instrument
LC/MS: liquid chromatography/mass spectrometry or its instrument
LC/MS/MS: liquid chromatography/tandem mass spectrometry or its instrument
NPD: nitrogen-phosphorus detector
SIM: selected ion monitoring
TIC: total ion chromatogram or total ion current
TLC: thin-layer chromatography
UV: ultraviolet (detection)
Contents

I. Chapters of general nature

1) How to handle biological specimens ... 1
2) Alternative specimens .. 9
3) Pitfalls and cautions in analysis of drugs and poisons 17
4) Pretreatments of human specimens ... 25
5) Detection methods ... 33
6) A computer system for diagnosis of causative drugs and poisons developed by the Japan Poison Information Center (Tokyo) 45
7) Practical use of the poison-net developed by the Japan Poison Information Network (Hiroshima) ... 51
8) Problems in toxin analysis in emergency medicine 59
9) Analyses of chemical warefare agents and their related compounds 69

II. Chapters on specific toxins

1. Volatile compounds

1) Carbon monoxide ... 91
2) Hydrogen sulfide and its metabolite, .. 101
3) Cyanide ... 113
4) Methanol and formic acid .. 123
5) Ethanol .. 135
6) Chloroform and dichloromethane ... 143
7) Toluene, benzene, xylene and stylene 149
8) Alkyl nitrites ... 153
9) Components of gasoline and kerosene 159

2. Controlled drugs

1) Amphetamines and their metabolites .. 171
2) Cannabinoids and their metabolites ... 187
3) Morphone and its analogues .. 195
4) Cocaine and its metabolites ... 207
5) Pentazocine ... 219
6) Lysergic acid diethylamide (LSD) .. 225
7) 3,4-Methylenedioxyamphetamine .. 229
8) Phencyclidine .. 241
9) γ-Hydroxybutyric acid ... 247

3. Psychopharmaceuticals and hypnotics
1) Phenothiazines .. 255
2) Butyrophenones .. 263
3) Tricyclic and tetracyclic antidepressants 271
4) Benzodiazepines .. 283
5) Bromisovalum ... 293
6) Barbiturates ... 301

4. General drugs
1) Diphenylmethane antihistaminics 315
2) Propionic acid derivative analgesic-antipyretics 325
3) Acetaminophen (paracetamol) 335
4) Acetylsalicylic acid .. 343
5) Antiepileptics .. 351
6) Muscle relaxants .. 359
7) β-Blockers ... 369
8) Local anaesthetics ... 377
9) Salicylic acid ... 391
10) β-Lactam antibiotics ... 395

5. Chemicals of daily necessaries
1) Hypochlorite ... 403
2) Benzalkonium chlorides ... 407
3) Hair dyes .. 415
4) Permethrin ... 425
5) Boric acid ... 431
6) Naphthalene .. 437
7) p-Dichlorobenzene ... 443
8) Ethylene glycol .. 449

6. Natural toxins and alkaloids
1) Aconite toxins ... 455
2) Mushroom toxins ... 469
3) Tetrodotoxin .. 481
4) Methylxanthine derivatives ... 491
5) Nicotine and cotinine .. 499
6) Tropane alkaloids ... 509
7) Oleander toxins .. 519

7. Pesticides
1) Simultaneous analysis of pesticides by GC/MS 527
2) Organophosphorus pesticides 535
3) Glufosinate and glyphosate ... 545
4) Carbamate pesticides .. 559
5) Paraquat and diquat ... 571
6) Cresol ... 581
7) Diazine and triazine herbicides 591
8) Coumarin rodenticides .. 599

8. Miscellaneous
1) Sarin and its decomposition products 609
2) VX and its decomposition products 619
3) Sodium azide .. 629
4) Arsenic compounds and other inorganic poisons 637
5) Nitrate and nitrite compounds 649
6) Methemoglobin ... 655

Subject index ... 659
List of Contributors

Shigeyuki HANAOKA
Chemicals Evaluation and Research Institute, Japan, Tokyo Laboratory, Saitama

Hideki HATTORI
Department of Legal Medicine, Aichi Medical University School of Medicine, Aichi

Kazuichi HAYAKAWA
Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa

Yoko HIEDA
Department of Legal Medicine, Shimane University School of Medicine, Shimane

Yasushi HORIZ
Department of Hospital Pharmacy, Niigata City General Hospital, Niigata

Kazuo IGARASHI
Kobe Gakuin University, Faculty of Pharmaceutical Sciences, Kobe

Noriaki IKEDA
Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka

Akira ISHII
Department of Legal Medicine, Fujita Health University School of Medicine, Aichi

Kiyoshi AMENO
Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa

Hiroaki ANDO
Criminal Investigation Laboratory, Metropolitan Police Department, Tokyo

Tomonori ARAO
Department of Legal Medicine, School of Medicine, University of Ryukyu, Okinawa

Manami FUJISAWA
Department of Hospital Pharmacy, Niigata City General Hospital, Niigata

Chiaki FUKE
Department of Legal Medicine, School of Medicine, University of Ryukyu, Okinawa

Mariko FUKUMOTO
Division of Toxicology, Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, Tokyo

Sunao FUKUSHIMA
Forensic Science Laboratory, Fukuoka Prefectural Police Headquarters, Fukuoka

Kunio GONMORI
Department of Legal Medicine, Hamamatsu University School of Medicine, Hamamatsu
List of Contributors

Kitae ITO
Department of Pharmacy,
Haramachi City Hospital, Fukushima

Yuko ITO
Aichi Prefectural Institute of Public Health,
Nagoya

Shigetoshi KAGE
Forensic Science Laboratory,
Fukuoka Prefectural Police Headquarters,
Fukuoka

Shinji KAGEYAMA
Mitsubishi Kagaku Bio-Clinical Laboratories, Inc.,
Tokyo

Munehiro KATAGI
Forensic Science Laboratory,
Osaka Prefectural Police Headquarters, Osaka

Yoshinao KATSUMATA
Department of Legal Medicine and Bioethics,
Nagoya University Graduate School of Medicine, Nagoya

Takaaki KIKUNO
Emergency and Critical Care Service,
National Tokyo Medical Center, Tokyo

Kojiro KIMURA
Department of Legal Medicine,
Graduate School of Biomedical Sciences,
Hiroshima University, Hiroshima

Toshikazu KONDO
Department of Legal Medicine,
Wakayama Medical University, Wakayama

Kazuhiro KOYAMA
Department of Pharmacy,
National Tokyo Medical Center, Tokyo

Keiko KUDO
Department of Forensic Pathology and Sciences,
Graduate School of Medical Sciences, Kyushu University, Fukuoka

Xiao-Pen LEE
Department of Legal Medicine,
Showa University School of Medicine, Tokyo

Naoto MATSUMOTO
Department of Pharmacy,
National Defense Medical College Hospital, Saitama

Akihiro MIKI
Forensic Science Laboratory,
Osaka Prefectural Police Headquarters, Osaka

Yoshihiko MIYATA
Criminal Investigation Laboratory,
Metropolitan Police Department, Tokyo

Michinao MIZUGAKI
Tohoku Pharmaceutical University, Sendai

Fumio MORIYA
Department of Legal Medicine,
Kochi University Medical School, Kochi

Rika NAKAJIMA
Department of Legal Medicine,
School of Medicine, Keio University, Tokyo

Akira NAMERA
Department of Legal Medicine,
Graduate School of Biomedical Sciences,
Hiroshima University, Hiroshima

Makoto NIHIRA
Department of Legal Medicine,
Nippon Medical School, Tokyo

Manami NISHIDA
Department of Legal Medicine,
Graduate School of Biomedical Sciences,
Hiroshima University, Hiroshima
Mayumi NISHIKAWA
Forensic Science Laboratory,
Osaka Prefectural Police Headquarters, Osaka

Kazuta OGURI
School of Pharmaceutical Sciences,
Kyushu University of Health and Welfare,
Miyazaki

Yukio OHTSUKA
Department of Forensic Pathology and Sciences,
Graduate School of Medical Sciences,
Kyushu University, Fukuoka

Hisao OKA
Aichi Prefectural Institute of Public Health,
Nagoya

Takeshi SAITO
Department of Forensic Medicine,
Tokai University School of Medicine, Kanagawa

Masakatsu SAKATA
Department of Clinical Toxicology and Metabolism, Faculty of Pharmaceutical Sciences,
Health Sciences University of Hokkaido,
Ishikari, Hokkaido

Keizo SATO
Department of Legal Medicine,
Showa University School of Medicine, Tokyo

Shouichi SATO
Department of Clinical Laboratory,
Chiba Cardiovascular Center, Chiba

Hiroshi SENO
Department of Legal Medicine,
Aichi Medical University School of Medicine,
Aichi

Yasuo SETO
National Research Institute of Police Science,
Chiba

Yoko SHIMAZU
Department of Pharmacy,
National Tokyo Medical Center, Tokyo

Tatsuo SHINOZUKA
Department of Legal Medicine,
School of Medicine, Keio University, Tokyo

Osamu SUZUKI
Department of Legal Medicine,
Hamamatsu University School of Medicine,
Hamamatsu

Shinichi SUZUKI
National Research Institute of Police Science,
Chiba

Yasuhiro SUZUKI
National Research Institute of Police Science,
Chiba

Nariaki TAKAYAMA
Forensic Science Laboratory,
Ishikawa Prefectural Police Headquarters,
Kanazawa

Tatsunori TAKAYASU
Forensic and Social Environmental Medicine,
Graduate School of Medical Science,
Kanazawa University, Kanazawa

Sanae TAKEICHI
Department of Forensic Medicine,
School of Medicine, Tokai University, Kanagawa

Kenichi TAKEKAWA
Forensic Science Laboratory,
Yamanashi Prefectural Police Headquarters,
Yamanashi

Einosuke TANAKA
Department of Legal Medicine,
Institute of Community Medicine,
University of Tsukuba, Tsukuba
Masaru TERADA
Department of Legal Medicine,
School of Medicine, Toho University, Tokyo

Hitoshi TSUCHIHASHI
Forensic Science Laboratory,
Osaka Prefectural Police Headquarters, Osaka

Makoto UEKI
Mitsubishi Kagaku Bio-Clinical Laboratories, Inc.,
Tokyo

Kanako WATANABE
Department of Legal Medicine,
Hamamatsu University School of Medicine,
Hamamatsu

Kazuhito WATANABE
Department of Hygienic Chemistry,
Faculty of Pharmaceutical Sciences,
Hokuriku University, Kanazawa

Ritsuko WATANABE
Department of Legal Medicine,
Osaka University Graduate School of Medicine,
Osaka

Hideyuki YAMADA
Graduate School of Pharmaceutical Sciences,
Kyushu University, Fukuoka

Mikio YASHIKI
Department of Legal Medicine,
Graduate School of Biomedical Sciences,
Hiroshima University, Hiroshima

Naofumi YOSHIOKA
Department of Forensic Medicine,
Akita University School of Medicine, Akita

Toshiharu YOSHIOKA
Department of Emergency Medicine,
Osaka Prefectural General Hospital, Osaka
I. Chapters of general nature