The Springer Series in Optical Sciences, under the leadership of Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, provides an expanding selection of research monographs in all major areas of optics: lasers and quantum optics, ultrafast phenomena, optical spectroscopy techniques, optoelectronics, quantum information, information optics, applied laser technology, industrial applications, and other topics of contemporary interest.

With this broad coverage of topics, the series is of use to all research scientists and engineers who need up-to-date reference books.

The editors encourage prospective authors to correspond with them in advance of submitting a manuscript. Submission of manuscripts should be made to the Editor-in-Chief or one of the Editors. See also http://springeronline.com/series/624

Editor-in-Chief

William T. Rhodes
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332-0250, USA
E-mail: bill.rhodes@ece.gatech.edu

Editorial Board

Toshimitsu Asakura
Hokkai-Gakuen University
Faculty of Engineering
1-1, Minami-26, Nishi 11, Chuo-ku
Sapporo, Hokkaido 064-0926, Japan
E-mail: asakura@eli.hokkai-s-u.ac.jp

Theodor W. Häschn
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Strasse 1
85748 Garching, Germany
E-mail: t.w.haensch@physik.uni-muenchen.de

Takeshi Kamiya
Ministry of Education, Culture, Sports
Science and Technology
National Institution for Academic Degrees
3-29-1 Otsuka, Bunkyo-ku
Tokyo 112-0012, Japan
E-mail: kamiyatk@niad.ac.jp

Ferenc Krausz
Vienna University of Technology
Photonics Institute
Gusshausstrasse 27/387
1040 Wien, Austria
E-mail: ferenc.krausz@tuwien.ac.at

Bo Monemar
Department of Physics
and Measurement Technology
Materials Science Division
Linköping University
58183 Linköping, Sweden
E-mail: bom@ifm.liu.se

Herbert Venghaus
Heinrich-Hertz-Institut
für Nachrichtentechnik Berlin GmbH
Einsteinufer 37
10587 Berlin, Germany
E-mail: venghaus@hhi.de

Horst Weber
Technische Universität Berlin
Optisches Institut
Strasse des 17. Juni 135
10623 Berlin, Germany
E-mail: weber@physik.tu-berlin.de

Harald Weinfurter
Ludwig-Maximilians-Universität München
Sektion Physik
Schellingstrasse 4/III
80799 München, Germany
E-mail: harald.weinfurter@physik.uni-muenchen.de
Motoichi Ohtsu (Ed.)

Progress in Nano-Electro-Optics IV

Characterization of Nano-Optical Materials and Optical Near-Field Interactions

With 123 Figures

Springer
Recent advances in electro-optical systems demand drastic increases in the degree of integration of photonic and electronic devices for large-capacity and ultrahigh-speed signal transmission and information processing. Device size has to be scaled down to nanometric dimensions to meet this requirement, which will become even more strict in the future. In the case of photonic devices, this requirement cannot be met only by decreasing the sizes of materials. It is indispensable to decrease the size of the electromagnetic field used as a carrier for signal transmission. Such a decrease in the size of the electromagnetic field beyond the diffraction limit of the propagating field can be realized in optical near fields.

Near-field optics has progressed rapidly in elucidating the science and technology of such fields. Exploiting an essential feature of optical near fields, i.e., the resonant interaction between electromagnetic fields and matter in nanometric regions, important applications and new directions such as studies in spatially resolved spectroscopy, nanofabrication, nanophotonic devices, ultrahigh-density optical memory, and atom manipulation have been realized and significant progress has been reported. Since nanotechnology for fabricating nanometric materials has progressed simultaneously, combining the products of these studies can open new fields to meet the above-described requirements of future technologies.

This unique monograph series entitled “Progress in Nano-Electro-Optics” is being introduced to review the results of advanced studies in the field of electro-optics at nanometric scales and covers the most recent topics of theoretical and experimental interest on relevant fields of study (e.g., classical and quantum optics, organic and inorganic material science and technology, surface science, spectroscopy, atom manipulation, photonics, and electronics). Each chapter is written by leading scientists in the relevant field. Thus, high-quality scientific and technical information is provided to scientists, engineers, and students who are and will be engaged in nano-electro-optics and nanophotonics research.

I gratefully thank the members of the editorial advisory board for valuable suggestions and comments on organizing this monograph series. I wish to express my special thanks to Dr. T. Asakura, Editor of the Springer Series in Optical Sciences, Professor Emeritus, Hokkaido University for recommending me to publish this monograph series. Finally, I extend an acknowledgement to
Preface to *Progress in Nano-Electro-Optics*

Dr Claus Ascheron of Springer-Verlag, for his guidance and suggestions, and to Dr H. Ito, an associate editor, for his assistance throughout the preparation of this monograph series.

Yokohama, October 2002

Motoichi Ohtsu
Preface to Volume IV

This volume contains four review articles focusing on different aspects of nano-electro-optics. The first chapter reviews a versatile scanning near-field optical microscope with magnetic contrast by utilizing a Sagnac interferometer for monitoring the magneto-optical Kerr effect. This microscope is used to characterize data-storage media as well as to study the formation of micromagnetic patterns in ultrathin magnetic films.

The second chapter aims at describing how to achieve high-quality T-shaped quantum wires with high spatial uniformity. To characterize local structural and optical properties in quantum wires, a high-resolution microscopic photoluminescence method is used. Lasing from a single-quantum-wire laser structure is also demonstrated.

The third chapter summarizes material parameters of InGaN, and then general transition modes are discussed based on screening of the piezoelectric field, as well as on localization behavior of exciton/carriers. Detailed results are also shown on near-field luminescence mapping in InGaN/GaN single-quantum-well structures in order to interpret the recombination mechanism in InGaN-based nanostructures.

The last chapter concerns the theoretical treatments of optical near field and optical near-field interactions. The half-space problems are solved based on the angular-spectrum representation of the scattered field, where the energy transfer between interacting objects is made clear. This treatment provides the basis to investigate the signal transport and associated dissipation in nano-optical devices.

As was the case of Volumes I–III, this volume is published by the support of an associate editor and members of the editorial advisory board. They are:

Associate editor: Ito, H. (Tokyo Inst. Tech., Japan)
Editorial advisory board: Barbara, P.F. (Univ. of Texas, USA)
Bernt, R. (Univ. of Kiel, Germany)
Courjon, D. (Univ. de Franche-Comte, France)
Hori, H. (Univ. of Yamanashi, Japan)
Kawata, S. (Osaka Univ., Japan)
Pohl, D. (Univ. of Basel, Switzerland)
Tsukada, M. (Univ. of Tokyo, Japan)
Zhu, X. (Peking Univ., China)
I hope that this volume will be a valuable resource for the readers and future specialists.

Tokyo, July 2004

Motoichi Ohtsu
Near-Field Imaging of Magnetic Domains
Gereon Meyer, Andreas Bauer, Günter Kaindl

1 Introduction .. 1
2 Magneto-Optical SNOM 2
 2.1 Faraday Effect and Kerr Effect 2
 2.2 Sagnac Interferometer 4
 2.3 Kerr Microscopy 7
 2.4 Domain Contrast in SNOM 8
3 Experimental Details .. 11
 3.1 UHV System ... 11
 3.2 UHV-SNOM Setup 14
 3.3 Sagnac-SNOM Setup 16
 3.4 Performance Tests 18
4 Magnetic Domains in Ultrathin Films 23
 4.1 Spin-Reorientation Transition 24
 4.2 Stripe-Domain Patterns 25
 4.3 Domain Contrast 27
 4.4 Study of Magnetization Reversal 30
 4.5 Transformation of Stripe Domains 33
5 Summary and Future Prospects 36
References ... 38

Improvement of Interface Quality in Cleaved-Edge-Overgrowth
GaAs Quantum Wires Based on Micro-optical
Characterization
Masahiro Yoshita, Hidefumi Akiyama

1 Introduction .. 43
2 T-Shaped Quantum Wires Grown
 by Cleaved-Edge Overgrowth Method 44
 2.1 Cleaved-Edge Overgrowth Method with MBE 44
 2.2 Micro-PL Imaging and Spectroscopy Setup
 to Characterize T Wires 46
 2.3 PL of T Wires Grown by the Original CEO Method . 47
3 Interface Roughness and Modulated Electronic States
 in (110) GaAs QWs .. 48
 3.1 Preparation of (110) GaAs QWs 48
 3.2 Macro-PL of the (110) GaAs QWs 49
 3.3 Micro-PL Spectroscopy of the (110) GaAs QWs 50
 3.4 Interface Roughness in the (110) GaAs QWs
 and T Wires Grown by the CEO Method 54
4 Formation of an Atomically Flat Surface on the (110) GaAs Grown
 by the CEO Method .. 54
 4.1 Atomic Arrangements of the (001)
 and (110) GaAs Surfaces ... 55
 4.2 Growth-Interrupt in situ Annealing Technique 56
 4.3 Formation of Atomically Flat CEO Surfaces
 by Growth-Interrupt Annealing 56
 4.4 Surface Morphology of the Annealed Surface
 with Fractional Monolayer Coverage 59
 4.5 Step-Edge Kinetics on the (110) GaAs Surface
 during Annealing ... 61
 4.6 First-Principles Calculations
 of Adatom Migration Barrier Energies on (110) GaAs 64
 4.7 Toward Formation
 of a Wider Atomically Flat (110) GaAs Surface 67
5 Fabrication of a High-Quality (110) GaAs QW
 with Atomically Smooth Interfaces 67
 5.1 Preparation of a (110) GaAs QW
 with Atomically Smooth Interfaces 69
 5.2 Micro-PL of the (110) GaAs QW 69
6 Fabrication of a High-Quality Single-Quantum-Wire
 Laser Structure and its Lasing Properties 73
 6.1 Preparation of a Single-T-Wire Laser Structure 73
 6.2 Spatial Uniformity of the Electronic States in the T Wire 75
 6.3 Lasing from a Single-Quantum-Wire Laser 76
7 Concluding Remarks and Future Perspective 77
References ... 79

Recombination Dynamics
in In\textsubscript{x}Ga\textsubscript{1\textendash}xN-Based Nanostructures
Yoichi Kawakami, Akio Kaneta, Kunimichi Omae, Yukio Narukawa,
Takashi Mukai ... 83
Quantum Theory of Radiation in Optical Near Field
Based on Quantization of Evanescent Electromagnetic Waves
Using Detector Mode
Tetsuya Inoue, Hirokazu Hori

1 Introduction .. 127
 1.1 Half-Space Problems
 and Angular-Spectrum Representation 128
 1.2 Quantization of Evanescent Electromagnetic Fields
 and Radiative Decay in Optical Near Field 130
 1.3 Detector-Mode Description for Radiation Problem .. 131
 1.4 Outline ... 132
2 Classical Theory of Radiation from an Oscillating Electric Dipole
 in Free Space 133
 2.1 Dipole Radiation in Free Space 133
 2.2 Total Radiation Intensity in Free Space 137
3 Classical Theory of Radiation Based
 on Angular-Spectrum Representation 139
 3.1 Angular-Spectrum Representation 140
 3.2 Angular-Spectrum Representation
 of Scattered Electromagnetic Fields 142
 3.3 Angular Spectrum of Dipole Radiation Fields
 in Optical Near-Field Regime 146
 3.4 Evaluation of Radiation Based
 on Angular-Spectrum Representation 148
4 Radiative Decay of Oscillating Electric Dipole in Half-Space Based
 on Angular-Spectrum Representation 150
 4.1 Half-Space Problems 150
 4.2 Angular-Spectrum Representation of Radiation Fields
 in Half-Space 154
 4.3 Electric Dipole Radiation into Medium 156
4.4 Electric Dipole Radiation into the Vacuum-Side Half-Space ... 157
4.5 Interaction between Electric Dipole and Dielectric Surface ... 158
5 Quantum Theory of Dipole Radiation Near a Dielectric Surface
 Based on Detector Modes .. 161
5.1 Normal Modes as the Basis of Field Quantization in Half-Space Problems; Triplet and Detector Modes 162
5.2 Detector-Mode Functions .. 165
5.3 Electric Field Operator in Half-Space Problems ... 168
5.4 Spontaneous Emission into Right Half-Space .. 170
5.5 Spontaneous Emission into Left Half-Space .. 172
5.6 Radiative Decay Rate and Lifetime of Electric Dipole in Half-Space .. 173
5.7 Dependence of Radiative Lifetime on Magnetic Quantum Number of Atom in Half-Space Problems 176
6 Quantum Theory of Multipole Radiation in Optical Near-Field Regime 181
6.1 Multipole Transition Matrix Elements .. 182
6.2 Spontaneous Decay Rate of Multipoles in Half-Space .. 184
7 Tunneling Picture of Optical Near-Field Interactions ... 188
7.1 Energy Transport via Tunneling in Optical Near-Field Interactions ... 189
7.2 Fundamental Process in Nano-Optics Device .. 192
Appendices ... 193
 A Vector Spherical Wave .. 193
 B Expansion of the Vector Plane Wave in Terms of the Vector Spherical Waves 195
 C Multipole Expansion of Transition Current .. 196
References .. 198

Index ... 201
List of Contributors

Hidefumi Akiyama
Institute for Solid State Physics
University of Tokyo
5-1-5 Kashiwanoha, Kashiwa
Chiba 277-8581, Japan
golgo@issp.u-tokyo.ac.jp

Andreas Bauer
Institut für Experimentalphysik
Freie Universität Berlin
Arnimallee 14
14195 Berlin, Germany
bauer@physik.fu-berlin.de

Hirokazu Hori
Interdisciplinary Graduate School of Medicine and Engineering
University of Yamanashi
4-3-11 Takeda
Kofu 400-8511, Japan
hirohori@yamanashi.ac.jp

Tetsuya Inoue
Department of Electronics
Yamanashi Industrial Technology College
1308 Kamiozo
Enzan 404-0042, Japan
t.inoue
@swallow.elec.yitjc.ac.jp

Günter Kaindl
Institut für Experimentalphysik
Freie Universität Berlin
Arnimallee 14
14195 Berlin, Germany
kaindl@physik.fu-berlin.de

Akio Kaneta
Department of Electronic Science and Engineering
Kyoto University
Katsura Campus, Nishikyo-ku
Kyoto 615-8510, Japan
kaneta@
fujita.kuee.kyoto-u.ac.jp

Yoichi Kawakami
Department of Electronic Science and Engineering
Kyoto University
Katsura Campus, Nishikyo-ku
Kyoto 615-8510, Japan
kawakami@kuee.kyoto-u.ac.jp

Gereon Meyer
Institut für Experimentalphysik
Freie Universität Berlin
Arnimallee 14
14195 Berlin, Germany
meyerg@physik.fu-berlin.de
Takashi Mukai
Nitride Semiconductor Research Laboratory
Nichia Corporation
491 Oka, Kaminaka, Anan
Tokushima 774-8601, Japan
tmukai@nichia.co.jp

Yukio Narukawa
Nitride Semiconductor Research Laboratory
Nichia Corporation
491 Oka, Kaminaka, Anan
Tokushima 774-8601, Japan
narukawa@hq.nichia.co.jp

Kunimichi Omae
Paul-Drude-Institut für Festkörperelektronik
Hausvogteiplatz 5-7
10117 Berlin, Germany
komae@pdi-berlin.de

Masahiro Yoshita
Institute for Solid State Physics
University of Tokyo
5-1-5 Kashiwanoha, Kashiwa
Chiba 277-8581, Japan
yoshita@issp.u-tokyo.ac.jp