Preface

Biomolecular computing is an interdisciplinary field that draws together molecular biology, DNA nanotechnology, chemistry, physics, computer science and mathematics. The annual international meeting on DNA-based computation has been an exciting forum where scientists of different backgrounds who share a common interest in biomolecular computing can meet and discuss their latest results. The central goal of this conference is to bring together experimentalists and theoreticians whose insights can calibrate each others’ approaches. The 9th Annual International Meeting on DNA Based Computers was held during June 1–4, 2003 in the University of Wisconsin, Madison, USA. The meeting had 106 registered participants from 12 countries around the world.

On the first day of the meeting, we had three tutorials: the first was on self-assembly of DNA nano structures which focused on the basic techniques of using designed DNA nano molecules to be self-assembled onto larger structures for computational purposes. This tutorial was given by Hao Yan of Duke University. The second tutorial was given by Chengde Mao of Purdue University in which Dr. Mao presented basic DNA biochemistry that was designed for non experimentalists. The third tutorial was given by Max Garzon of the University of Memphis. Dr. Garzon gave a lecture on computational complexity which was tailored for non-computer scientists. The next three days were for invited plenary lectures, and regular oral and poster presentations. Invited plenary lectures were given by Helen Berman of Rutgers University (USA), Giancarlo Mauri of the University of Milan (Italy), Guenter von Kiedrowski of Ruhr University (Germany), and Sorin Istrail of Celera/Applied Biosystems.

The organizers sought to attract the most significant recent research with the highest impact on the development of the discipline. Papers and posters with new experimental results were particularly encouraged. Authors who wished their work to be considered for either oral or poster presentation were asked to select from one of two submission “tracks”: Track A, Full Paper; Track B, One-Page Abstract.

For authors with late-breaking results, or who were submitting their manuscript to a scientific journal, a one-page abstract, rather than a full paper, could be submitted in Track B. Authors could (optionally) include a preprint of their full paper for consideration by the program committee. The program committee received 48 submissions in Track A, and 12 submissions in Track B. These submissions were then reviewed by the program committee members. In principle, four committee members were allocated for each submission. In considering the returned review reports, all discussions pertaining to the final decisions were made online by the program committee members. We finally selected 32 oral presentations from Tracks A and B. The oral and poster presentations included all areas that relate to biomolecular computing, such as algorithms and applications, analysis of laboratory techniques/theoretical models, computational
processes in vitro and in vivo, DNA-computing-based biotechnological applications, DNA devices, error evaluation and correction, in vitro evolution, models of biomolecular computing, molecular design, and simulation tools.

The editors would like to acknowledge the help of the conference’s Program Committee in reviewing the submitted abstracts. The editors thank the Organizing Committee for their superb organization skill. We are grateful for the generous support and sponsorship of the conference by GenTel Corporation, DARPA (IPTO Biocomputation), NSF (CISE QUBIC ITR), and the Chemistry Department of the University of Wisconsin, Madison. Finally, the editors would like to thank all of the participants in the DNA9 conference for making it a wonderful experience. We hope that this volume has captured the spirit and exhilaration that we experienced at the conference.

December 2003

Junghuei Chen
John Reif
Organization

Program Committee

Martyn Amos University of Exeter, UK
Junghuei Chen (Chair) University of Delaware, USA
Russell Deaton University of Arkansas, USA
Masami Hagiya University of Tokyo, Japan
Natasha Jonoska University of South Florida, USA
Lila Kari University of Western Ontario, Canada
Laura Landweber Princeton University, USA
Gheorghe Paun Institute of Mathematics of the Romanian Academy, Romania
John Reif (Co-chair) Duke University, USA
Ned Seeman New York University, USA
Ehud Shapiro Weizmann Institute of Science, Israel
Akira Suyama University of Tokyo, Japan
Erik Winfree California Institute of Technology, USA
Bernard Yurke Bell Laboratories, Lucent Technologies, USA

Organizing Committee

Bryce Nelson GenTel Corporation, Madison, Wisconsin, USA
Robert M. Corn University of Wisconsin, Madison, Wisconsin, USA
Christine E. Heitsch University of Wisconsin, Madison, Wisconsin, USA
Roberta M. Ostrander University of Wisconsin, Madison, Wisconsin, USA
Lloyd M. Smith University of Wisconsin, Madison, Wisconsin, USA

Sponsors

GenTel Corporation
DARPA (IIPTO Biocomputation)
NSF (CISE QUBIC ITR)
UW-Madison, Chemistry
Table of Contents

New Experimental Tools

A Lab-on-a-Chip Module for Bead Separation in DNA-Based Concept Learning
Hee-Woong Lim, Hae-Man Jang, Sung-Mo Ha, Young-Gyu Chai, Suk-In Yoo, and Byoung-Tak Zhang ... 1

Parallel Translation of DNA Clusters by VCSEL Array Trapping and Temperature Control with Laser Illumination
Yusuke Ogura, Takashi Kawakami, Fumika Sumiyama, Akira Suyama, and Jun Tanida ... 10

Chemical Switching and Molecular Logic in Fluorescent-Labeled M-DNA
Shawn D. Wettig, Grant A. Bare, Ryan J. S. Skinner, and Jeremy S. Lee 19

RCA-Based Detection Methods for Resolution Refutation
In-Hee Lee, Ji Yoon Park, Young-Gyu Chai, and Byoung-Tak Zhang 32

Theory

Word Design for Molecular Computing: A Survey
G. Mauri and C. Ferretti ... 37

Time-Varying Distributed H Systems with Parallel Computations: The Problem Is Solved
Maurice Margenstern, Yurii Rogozhin, and Sergey Verlan 48

Deadlock Decidability in Partial Parallel P Systems
Daniela Besozzi, Giancarlo Mauri, and Claudio Zandron 55

Computer Simulation and Sequence Design

Languages of DNA Based Code Words
Nataša Jonoska and Kalpana Mahalingam 61

Secondary Structure Design of Multi-state DNA Machines Based on Sequential Structure Transitions
Hiroki Uejima and Masami Hagiya .. 74

Analyzing Secondary Structure Transition Paths of DNA/RNA Molecules
Hiroki Uejima and Masami Hagiya .. 86
Table of Contents

Self-Assembly and Autonomous Molecular Computation

Self-Assembled Circuit Patterns
Matthew Cook, Paul W.K. Rothemund, and Erik Winfree 91

One Dimensional Boundaries for DNA Tile Self-Assembly
Rebecca Schulman, Shaun Lee, Nick Papadakis, and Erik Winfree 108

Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly
Erik Winfree and Renat Bekbolatov ... 126

Experimental Solutions

A DNA-Based Memory with In Vitro Learning and Associative Recall
Junghuei Chen, Russell Deaton, and Yu-Zhen Wang 145

Efficiency and Reliability of Semantic Retrieval in DNA-Based Memories
Max H. Garzon, Kiran Bobba, and Andrew Neel 157

Nearest-Neighbor Thermodynamics of DNA Sequences
with Single Bulge Loop
Fumiaki Tanaka, Atsushi Kameda, Masahito Yamamoto, and Azuma Ohuchi .. 170

New Computing Models

Mathematical Considerations in the Design
of Microreactor-Based DNA Computers
Michael S. Livstone and Laura F. Landweber 180

Towards a Re-programmable DNA Computer
Danny van Noort and Laura F. Landweber 190

In Vitro Translation-Based Computations
Yasubumi Sakakibara and Takahiro Hohsaka 197

Autonomous Biomolecular Computer Modeled after Retroviral Replication
Nao Nitta and Akira Suyama ... 203

Biomolecular Computing by Encoding of Regulated
Phosphorylation-Dephosphorylation and Logic
of Kinase-Phosphatase in Cells
Jian-Qin Liu and Katsunori Shimohara 213

Conformational Addressing Using the Hairpin Structure
of Single-Strand DNA
Atsushi Kameda, Masahito Yamamoto, Hiroki Uejima, Masami Hagiya,
Kensaku Sakamoto, and Azuma Ohuchi 219

Author Index ... 225