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Preface

Computational electromagnetics is a very rapidly developing field that developed
many theoretical approaches and computational tools. Over the years, it has
extended its range of application from microwave, light scattering to nanophotonics
and even electron energy loss spectroscopy. The Generalized Multipole Technique
(GMT) is a surface-based theory which is not that well known but there are a couple
of researchers continuously developing and extending the method such that it has
reached some kind of maturity over the years.

In 1998, we arranged a workshop [1] in Bremen, Germany supported by the
Volkswagen Foundation which had a focus on the Generalized Multipole
Technique to document the state of the method at that time and to especially initiate
discussion between the different research groups. Following the workshop, an
edited volume [2] was published with contributions by major researchers in the
field. Out of this workshop, a number of international collaborations arose which
continued to work on different variants of the Generalized Multipole method.

The name Generalized Multipole Technique (GMT) was coined by Art Ludwig
[3] for a number of related methods to solve the electromagnetic boundary value
problem, which were developed independently by a number of research groups
distributed all over the world. The common feature of these methods consists in
field expansion by a number of multipoles positioned away from the boundary
surface. Commonly, some kind of generalized point matching scheme is applied to
find the expansion coefficient of the multipoles.

Over the years, research in the GMT continued and many new advances in
theory, programming, and application have been achieved such that after 20 years,
we think it is the right time to have another close look at the current state of the
method. The edited book compiles a couple of chapters on various concepts related
to the General Multipole Technique to demonstrate the progress achieved over the
last two decades and show the new ideas developed during the last 10 years.

In Chap. 1, it is shown that the theory of principal modes can be derived for any
smooth particle starting from a set of distributed electric and magnetic multipoles.
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An important field of development is hybrid methods. That the invariant
imbedding approach can be combined with the null-field method is demonstrated in
Chap. 2.

The Null-field Method with Discrete Sources (NFM-DS) makes use of field
expansion using multiple multipoles. Recent progress to compute light scattering by
large axisymmetric particles using NFM-DS is presented in Chap. 3.

Some practical applications in nanotechnology require light scattering simula-
tion by a particle partly embedded in an infinite stratified medium. How this
problem can be handled using the Discrete Sources Method is investigated in
Chap. 4.

Chapter 5 is an overview of the recent works in the Method of Auxiliary
Sources.

Chapter 6 presents a novel numerical approach to investigate the resonance
behavior of plasmonic particles on a substrate under electron beam illumination
based on the Multiple Multipole Program.

Low-Loss Electron Energy Loss Spectroscopy is currently a hot research topic.
How the Generalized Multipole Technique (GMT) can be used in this field is
addressed in Chap. 7.

Yasuuras Method of Modal Expansion has been developed in Japan. In Chap. 8§,
this method is applied to investigate scattering by gratings.

An important aspect of the Generalized Multipole Technique is the suitable
choice of locations for the sources. This topic is treated in Chap. 9 by James E.
Richie.

We hope that these chapters give a fresh look at the evolution and development
of the Generalized Multiple Technique. Of course in such a book, the fundaments
needed cannot be fully covered. For this, the interested reader is referred to the book
by Doicu et al. [4].

As no book can be published without some assistance, we have to thank all
contributors who send their text on time. We especially like to thank Prabhan
Vishwanath who helped with latex compilation.

Bremen, Germany Thomas Wriedt
Moscow, Russia Yuri Eremin
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