ISSI Scientific Report Series

Volume 15
The ISSI Scientific Report Series present the results of Working Groups (or Teams) that set out to assemble an expert overview of the latest research methods and observation techniques in a variety of fields in space science and astronomy. The Working Groups are organized by the International Space Science Institute (ISSI) in Bern, Switzerland. ISSI’s main task is to contribute to the achievement of a deeper understanding of the results from space-research missions, adding value to those results through multi-disciplinary research in an atmosphere of international cooperation.

More information about this series at http://www.springer.com/series/10151
Foreword

The world of Earth Observation (EO) is rapidly changing as a result of exponential advances in sensor and digital technologies. The speed of change has no historical precedent. Recent decades have witnessed extraordinary developments in ICT, including the Internet, cloud computing and storage, which have all led to radically new ways to collect, distribute and analyse data about our planet.

This digital revolution is also accompanied by a sensing revolution that provides an unprecedented amount of data on the state of our planet and its changes.

Europe leads this sensing revolution in space through the Copernicus initiative and the corresponding development of a family of Sentinel missions. This has enabled the global monitoring of our planet across the whole electromagnetic spectrum on an operational and sustained basis.

In addition, a new trend, referred to as “New Space” in the USA or “Space 4.0” in Europe, is now rapidly emerging through the increasing commoditization and commercialization of space. In particular, with the rapidly dropping costs of small sat building, launching and processing, new EO actors including startups and ICT giants are now entering the space business in masses, forming new constellations of standardized small sats that deliver a new class of data on our planet with higher spatial resolution and increased temporal frequency.

These new global data sets from space lead to a far more comprehensive picture of our planet. This picture is now even more refined via data from billions of smart and inter-connected sensors referred to as the Internet of Things (IoT).

Such streams of dynamic data on our planet offer new possibilities for scientists to advance our understanding of how the ocean, atmosphere, land and cryosphere operate and interact as part on an integrated Earth System. It also represents new opportunities for entrepreneurs to turn big data into new types of information services. However, these opportunities come with new challenges for scientists, businesses, data and software providers who must make sense of the vast and diverse amount of data by capitalizing on new technologies such as big data analytics.
This book invites you to explore various elements of the big data revolution, addressing the development of Space 4.0, the new generation of data-driven research infrastructure (including the emergence of data cubes), new applications integrating IoT and EO, new business models in the emerging geo-sharing economy, new ways to support e-learning and digital education, new application of technologies such as cloud computing, artificial intelligence (AI), and deep learning, and the increasing role of new actors such as innovative startups, ICT corporates, data scientists and citizen scientists. By doing so, it aims to stimulate new ideas about how to make the most of EO and derived information in a rapidly changing environment.

Wishing you an inspiring journey in the exciting field of EO Open Science and Innovation.

Josef Aschbacher
Director of Earth Observation Programmes
European Space Agency (ESA)
Frascati, Italy
Contents

Part I Join the Geo Revolution

The Changing Landscape of Geospatial Information Markets 3
Conor O’Sullivan, Nicholas Wise, and Pierre-Philippe Mathieu

The Digital Transformation of Education 25
Ravi Kapur, Val Byfield, Fabio Del Frate, Mark Higgins, and Sheila Jagannathan

The Open Science Commons for the European Research Area 43
Tiziana Ferrari, Diego Scardaci, and Sergio Andreozzi

Citizen Science for Observing and Understanding the Earth 69
Mordechai (Muki) Haklay, Suvodeep Mazumdar, and Jessica Wardlaw

Part II Enabling Data Intensive Science

Fostering Cross-Disciplinary Earth Science Through Datacube Analytics .. 91
Peter Baumann, Angelo Pio Rossi, Brennan Bell, Oliver Clements, Ben Evans, Heike Hoenig, Patrick Hogan, George Kakaletris, Panagiota Koltsida, Simone Mantovani, Ramiro Marco Figuera, Vlad Merticariu, Dimitar Misev, Huu Bang Pham, Stephan Siemen, and Julia Wagemann

Mind the Gap: Big Data vs. Interoperability and Reproducibility of Science ... 121
Max Craglia and Stefano Nativi

Cyber-Infrastructure for Data-Intensive Geospatial Computing 143
Rajasekar Karthik, Alexandre Sorokine, Dilip R. Patlolla, Cheng Liu, Shweta M. Gupte, and Budhendra L. Bhaduri
Machine Learning Applications for Earth Observation 165
David J. Lary, Gebreab K. Zewdie, Xun Liu, Daji Wu, Estelle Levetin,
Rebecca J. Allee, Nabin Malakar, Annette Walker, Hamse Mussa, Antonio
Mannino, and Dirk Aurin

New Generation Platforms for Exploration of Crowdsourced
Geo-Data .. 219
Maria Antonia Brovelli, Marco Minghini, and Giorgio Zamboni

Part III Use Cases Open Science and Innovation

Mapping Land Use Dynamics Using the Collective Power
of the Crowd .. 247
Christoph Aubrecht, Joachim Ungar, Dilek Ozceylan Aubrecht,
Sérgio Freire, and Klaus Steinnocher

The Emergence of the GeoSharing Economy 255
Ursula Benz and Manfred Krischke

Sustainable Agriculture and Smart Farming 261
Heike Bach and Wolfram Mauser

Earth Observation Data for Enterprise Business Applications 271
Hinnerk Gildhoff

Development of an Earth Observation Cloud Platform in Support
to Water Resources Monitoring .. 275
Andreea Bucur, Wolfgang Wagner, Stefano Elefante, Vahid Naeimi,
and Christian Briese

Putting Big Data Innovation into Action for Development 285
Trevor Monroe, Stephanie Debere, Kwawu Mensa Gaba, David Newhouse,
and Talip Killic

Mapping Floods and Assessing Flood Vulnerability for Disaster
Decision-Making: A Case Study Remote Sensing Application
in Senegal .. 293
Bessie Schwarz, Gabriel Pestre, Beth Tellman, Jonathan Sullivan,
Catherine Kuhn, Richa Mahtta, Bhartendu Pandey, and Laura Hammett

Earth Observation and Geospatial Implementation: Fueling
Innovation in a Changing World ... 301
Sudhir Raj Shrestha, Matthew Tisdale, Steve Kopp, and Brett Rose
Artificial Intelligence and Earth Observation to Explore Water Quality in the Wadden Sea .. 311
Luigi Ceccaroni, Filip Velickovski, Meinte Blaas, Marcel R. Wernand, Anouk Blauw, and Laia Subirats

Erratum ... E1

Index .. 321