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Foreword

Astrophysics is hard. This branch of physics presents a number of obvious
challenges to observers and experimental scientists. The targets are at tremendous
distances, signals are weak, experimental setup is difficult or impossible to control
(i.e., we must analyze the data that nature provides and cannot carefully design
experiments), and results are often limited by cosmic variance and telescope
time. Edwin Hubble’s famous characterization of observational astrophysics is apt:
“...we search among ghostly errors of observations for landmarks that are scarcely
more substantial.” Similarly, modern astrophysics makes intense demands on theo-
rists. Current problems are rarely tractable with analytical treatments, and computer
simulations require exquisite resolution and extreme dynamic range in order to
adequately capture crucial small-scale microphysical processes in a cosmological
(large-scale) context. Indeed, in the area of galaxy formation and evolution, full
numerical modeling of all of the relevant physics is usually impossible; many
important but unresolved processes must be handled with sub-grid prescriptions, and
different prescriptions for sub-grid physics can lead to profoundly different results.
To make progress today, theorists must be inventive and resourceful, but they must
also exercise caution about systematic uncertainties in simulation outcomes.

For these reasons, it is perhaps not surprising that just a few years ago, a
highly influential paper by Kere§ et al. presented a seemingly simple question:
how do galaxies get their gas? This is clearly a fundamental question about galaxy
evolution, and at first glance this seems like a relatively straightforward issue. After
all, the (presumably pristine) intergalactic gas reservoir from which galaxies form
is mostly a simple hydrogen plasma, and many of the complications that plague
other topics (e.g., dust, molecules, turbulence, magnetic fields, and cosmic rays)
might be negligible or at least of secondary importance. However, in reality this
simple question has proved to be a recalcitrant problem, for many reasons. On
the observational side, accreting intergalactic gases have very low densities, and
at the expected densities, emission from the accreting gas is very difficult (often
impossible) to detect. Moreover, the infalling material can be shock heated into
temperature ranges (e.g., the so-called warm-hot intergalactic medium at 10°—
107 K) that require ultraviolet or X-ray observations with cutting-edge telescopes
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in space, an expensive endeavor. This seemingly simple question creates headaches
for theorists as well, e.g., in addition to shock heating, infalling gas can be
shredded by processes such as the Kelvin-Helmholtz instability. Conversely, some
accreting material could be thermally unstable and could fragment into rather small
and low-mass clouds that ultimately drop into a galaxy and fuel star formation.
These processes can be difficult to accurately model in computational simulations,
especially if the simulation has a large enough size to provide a proper cosmological
context. In addition, gas accretion is not an isolated phenomenon; as the material
descends into a galaxy, it may encounter outflowing and enriched material driven
away by star formation or feedback from supermassive nuclear black holes, and the
interactions between the infalling and outflowing matter can significantly change
how accretion works (and the theoretical predictions to be tested with observations).
Stripping of gas from satellite galaxies may play a role in addition to infalling
primordial material, and of course dark matter cannot be ignored. In the end,
understanding how galaxies get their gas turns out to be a very difficult question.

However, there are reasons to feel optimistic about the likelihood of progress
on understanding galactic gas accretion. Absorption spectroscopy can detect low-
density gas and is orders of magnitude more sensitive than emission studies, and
access to high-resolution spectroscopy in the rest-frame UV and X-ray bands
provides detailed information on all of the likely phases in circumgalactic and
intergalactic media from z = 0 to z > 5, including the elusive warm-hot
gas. The deployment of the Cosmic Origins Spectrograph (COS) on the Hubble
Space Telescope has been particularly transformative. By providing coverage of
UV resonance lines from a wide variety of elements and ionization stages at
low and intermediate redshifts, COS has enabled statistically useful studies of
absorption lines from circumgalactic/intergalactic plasmas in a variety of contexts,
and programs such as the COS-Halos survey have led to rapid progress on low-
density and highly ionized gas in galaxy halos. On the theoretical side, Moore’s
Law continues to hold, and advances in computational power support increasingly
sophisticated simulations. Theoretical modeling is improving by leaps and bounds.

For these reasons, this is an ideal time for a set of detailed reviews of recent
observational and theoretical work on the topic of how galaxies acquire their gas.
The chapters in this book present a set of reviews that span many of the key
observations of circumgalactic material ranging from cool and neutral matter to hot
and highly ionized plasma over a wide range of redshifts. The book also presents
excellent discussions of theoretical motivations and progress on several aspects of
accretion and galactic feedback. I expect that this publication will provide a valuable
tool for pundits and highly experienced researchers as well as students that are just
beginning to come up to speed on galaxy evolution. I am sure that I will often reach
for this set of reviews, and I commend the authors and editors for assembling an
excellent compendium on a crucial aspect of galaxy evolution.

Amherst, MA, USA Todd Tripp
November 2016



Preface

From majestic spirals to behemoth ellipticals to disordered dwarfs, the richness and
diversity of galaxies has been a subject of study since the time of Hubble. A common
feature among all galaxies is that their growth is driven by accretion of material from
a vast reservoir of surrounding intergalactic gas, which provides fuel for forming
new stars and growing supermassive black holes. Yet this ubiquitously predicted
accretion has been notoriously difficult to detect directly. Until recently accretion
was only seen around our own Milky Way, but advancing facilities have now enabled
astronomers to obtain tantalizing evidence of accretion out to much earlier epochs,
back to when galaxies were in their heyday of growth. Meanwhile, supercomputer
simulations have highlighted that simple gravitationally driven accretion is only
one aspect of a vast and complex story for how galaxies obtain their fuel, a story
that includes energetic processes such as supernova-driven winds and black hole
accretion. This edited volume presents the current state of accretion studies from
both observational and theoretical perspectives, and charts our progress towards
answering the fundamental yet elusive question, “how do galaxies get their gas?”

Understanding how galaxies form and evolve has been a central focus in
astronomy for over a century. These studies have accelerated in the new millennium,
driven by two key advances: the establishment of a firm concordance cosmological
model that provides the backbone on which galaxies form and grow, and the
recognition that galaxies grow not in isolation but within a “cosmic ecosystem”
that includes the vast reservoir of gas filling intergalactic space. This latter aspect
in which galaxies continually exchange matter with the intergalactic medium via
inflows and outflows has been dubbed the “baryon cycle”, and is featured as one
of the central questions in the 2010 Astronomy Decadal Survey (New Worlds, New
Horizons). The topic of our book is directly related to the baryon cycle, in particular
its least well-constrained aspect, namely gas accretion.

Accretion is a rare area of astrophysics in which the basic theoretical predic-
tions are established, but the observations have been as yet unable to verify the
expectations. Accretion has long been seen around the Milky Way in so-called High
Velocity Clouds, but the inferred accretion rates are uncertain. Detecting accretion
even around nearby galaxies has proved challenging; its multiphase nature requires

vii
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sensitive observations across the electromagnetic spectrum for full characterization.
Theory also strongly predicts that accretion is much more rapid in the early
universe, so much effort has gone into developing new ways to detect accretion in
distant, unresolved galaxies. A promising approach involves looking for kinematic
signatures, but accretion signatures are often confused with internal motions within
galaxies. Meanwhile, theorists have realized that accretion left unchecked would
lead to galaxies that look nothing like observed galaxies. Hence accretion must
somehow be a self-regulating process. Understanding the physical origin of this
delicate balance of the baryon cycle that leads to galaxies as we see them has
proved to be an immense challenge, requiring the most advanced supercomputer
simulations to model properly. Accretion studies therefore touch a wide range
of astrophysical processes, and hence a wide cross section of the astronomical
community.

An edited volume on this topic is timely for a number of reasons. Observational
facilities are finally able to access the wavelength ranges and depths at which
accretion processes may be manifest. Because inflowing gas is diffuse and does not
glow like stars, the best hope for direct detection generally lies in absorption-line
spectroscopy. It turns out that the ultraviolet waveband contains the most interesting
lines for this purpose, which has made the Cosmic Origins Spectrograph on Hubble
a game changer for baryon cycle observations. Meanwhile, the emergence of
multi-object spectroscopy on 10m-class ground-based telescopes such as Keck and
VLT has likewise revolutionized our understanding of baryon cycle processes at
intermediate redshifts, where the UV lines are redshifted into the more accessible
optical band. These baryon cycle studies represent a key line of investigation for
upcoming 30m-class facilities and the proposed next-generation UV/optical space
telescope (LUVOIR), which may even be sensitive enough to map UV line emission
from accreting gas. At the same time, radio investigations at low redshift continue to
unravel the properties of the neutral gas around galaxies in high spatial resolution.
Hence the time is right to survey these multiple lines of investigation and determine
the state of the field in accretion studies of the baryon cycle.

Acknowledgments We are grateful to Nora Rawn, Sheik Mohideen, and the
Springer staff for their advice and support in the preparation of this volume.
Andrew Fox thanks Dr. Fred Lo for hosting a workshop on gas accretion at NRAO
that helped to formulate the idea for this book. During the preparation of the final
manuscript, we learned that Fred had sadly passed away. We acknowledge his key
role in bringing this volume together.

Baltimore, MD, USA Andrew Fox
Cape Town, South Africa Romeel Davé
December 2016
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Large Binocular Telescope

Low-ionization nuclear emission line regions

Lyman limit system

Large Magellanic Cloud

Luminous red galaxy

Low Resolution Imaging Spectrometer

Large UltraViolet/Optical/InfraRed (mission concept)
Low-velocity cloud

Lambda Cold Dark Matter (cosmology/model)
Mapping Nearby Galaxies at APO (survey)

MusE GAs FLOw and Wind (survey)

Multi-Object Spectrometer For Infra-Red Exploration
MUSE Quasar Nebulae

Magellanic Stream

Multi-Unit Spectroscopic Explorer (instrument on VLT)
Mass-metallicity relation

Quiescent blue compact dwarf

Quasi-stellar object

Palomar Cosmic Web Imager

Probability distribution function

Partial Lyman limit system

Point spread function

Sloan Digital Sky Survey

Star forming galaxy

Star formation rate

SInfoni Mg II Program for Line Emitters



Acronyms

SINFONI
SKA
SLLS

SN

SPH
Sub-DLA
SXRB
TMT
TPCF
TTT

uv

UVB
VLT
VMP
WHAM
WSRT
XMP

Xix

Spectrograph for INtegral Field Observations in the Near Infrared
Square Kilometer Array

Super Lyman limit system

Supernovae

Smoothed particle hydrodynamics
Sub-damped Lyman-alpha (system)
Soft X-ray background

Thirty-Meter Telescope

Two-point correlation function

Tidal torque theory

Ultraviolet

Ultraviolet Background

Very Large Telescope

Very metal poor (gas or absorbers)
Wisconsin H-alpha Mapper
Westerbork Synthesis Radio Telescope
Extremely metal poor (galaxy)
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