It is a pleasure for me to welcome you to the TMS 2017 Annual Meeting & Exhibition in San Diego and to present to you the proceedings of Light Metals 2017. First of all, I would like to honor all of you who have contributed to make this an excellent reference for the developments within aluminium. All the efforts by you are extremely important for bringing better processes and better products to our society, making aluminium the preferred metal for growth and prosperity in a global perspective.

In 2016, the Hall-Héroult process celebrated its 130-year anniversary, in a period with aluminum experiencing an exceptional growth, surpassing all other metals over a long period. Moreover, there is no reason to believe this will not continue in the years to come.

The growth is adding extra pressure on the bauxite and alumina industry, especially on environmental issues related to mining and the red mud residue. In addition, more alumina refineries are located apart from the mines, making bauxite emerging as a bulk commodity in the trading market.

The growth in aluminum production in the East, especially China, has been tremendous, and more plants are on the drawing board. Unfortunately, this has caused an oversupply with low market prices for aluminum, which may continue for several years to come unless environmental restrictions on CO₂ emissions in China slow down the expansive policy. The recent growth, mostly based on coal-fired power plants, with an environmental footprint ten times that of aluminum produced from hydro- or nuclear power is challenging aluminum as a green metal.

As more aluminum is being recycled, in some areas reaching close to 50 %, both casting and alloying operations are prone to become more demanding due to the variety in composition of recycled aluminum. Fortunately, we also see a healthy growth in aluminum replacing more heavy metals in transportation, leading to better energy efficiency. The growth in both electric and plug-in hybrid cars and trucks are promising for our industry and makes us eager to reply to new demands for products and leaner production strategies.

In spite of the pressure on the aluminum price, which we have to cope with through process and technology improvements, the overall picture of the industry is good. In times with low market prices, it may be comfortable to cut back on R&D as a means to improve economical results. However, lack of continuity in long-term R&D may eventually slow down the drive for making the industry, even more cost-effective and environmentally sustainable. In this perspective, industrial contributions and participation at The Minerals, Metals & Materials Society’s (TMS) meetings are not reflecting an aggressive attitude. For highly educated people recruited to the industry, not being able to participate with scientific contributions is a loss of opportunity to meet experienced people in the industry and from academia, reducing the opportunity to create networks and to get new inspiration useful in their daily work. We should all work together, share ideas, and contribute to develop new opportunities for our industry and our society.

In the organizing of the proceedings and the sessions, I would like to express my appreciation to the efforts of the subject chairs: Yanjun Li, David Gildemeister, Houshang Alamdari, Mark Dorreen, and Ting-an Zhang, as well as their session chairs that have reviewed the
manuscripts. I also have to mention Anne Kvithyld and John Grandfield for organizing the LMD Symposium in Honor of Christian Simensen and Thorvald Abel Engh together with David Gildemeister.

This year, the procedure for submitting manuscripts changed. This may have caused some confusion; however, as it is with our industry, improvements are not possible unless we are willing to change. And, the lessons learned this year will be used to improve next year’s procedure. Finally, I would like to express my great appreciation to the TMS staff for their devoted support in the preparation of this volume.

Arne P. Ratvik
Contents

Part I Alumina and Bauxite: Digestion and Calcination

CFB Alumina Calciners—New and Future Generation Opportunities for Green Field Refineries .. 3
Linus Perander, Alessio Scarsella, Edgar Gasafi, and Hans-Werner Schmidt

Evolutional Development of Alkaline Aluminosilicates Processing Technology ... 9
Andrey Panov, Sergey Vinogradov, and Svyatoslav Engalychev

Characterization and Ore Dressing of Bauxite from Brazil 17
Karoline K. Ferreira, Bruna L. Novo, Danielle C. Castro, Daniel Barcellos,
Luiz C. Bertolino, Antônio C.O. Guerra, Carla N. Barbato, Adriana A.S. Felix,
Marta E. Medeiros, Francisco M.S. Garrido, and Fernanda A.N.G. Silva

Process Optimization for Diaspore Digestion Equilibrium Using Response Surface Methodology ... 25
Zhengyong Zhang

Thermodynamic Analysis and Formation Law of Q Phase of Calcium Aluminate Clinker .. 31
Long Lu, Dongdong Ma, Di Zhang, Tianxu Zhang, and Bo Wang

Leaching Behavior of Alumina from Smelting Reduction Calcium Aluminate Slag with Sodium Carbonate Solution 37
Zhifang Tong and Yingjie Li

Part II Alumina and Bauxite: Bauxite Residues Technology

Security Disposal and Comprehensive Utilization of Bauxite Residues 47
Songqing Gu, Zhonglin Yin, and Lijuan Qi

Bauxite Residue Amendment Through the Addition of Ca and or Mg Followed by Carbonation .. 53
Luis C.A. Venancio, José Antonio Silva Souza, Emanuel Negrão Macedo,
Fernando Aracati Botelho, Amanda Morais de Oliveira, and Raissa Silva Fonseca

Application of Tricalcium Aluminate Instead of Lime for the Recovery of Aluminum in Middle-Low Grade Bauxite in Calcification-Carbonization Process ... 61
Yanxiu Wang, Ting-an Zhang, Guozhi Lu, Weiguang Zhang, Xiaofeng Zhu,
and Liqun Xie

Low Temperature Reduction of Hematite in Red-Mud to Magnetite 67
Sumedh Gostu, Brajendra Mishra, and Gerard P. Martins
Production of 3004 Aluminum Alloy Sheet for Structural Applications from Twin Roll Casting ... 173
Ali Ulaş Malcıoğlu and Seda Ertan

Aluminum Alloys with Tailored TiB₂ Particles for Composite Applications 181
Xingtao Liu, Yanfei Liu, David Yan, Qingyou Han, and Xiaoming Wang

Development of Low Expansion and High Strength Aluminum Matrix Hybrid Composite .. 187
Jamuna Sethi, Siddhartha Das, and Karabi Das

Part VI Aluminum Alloys, Processing and Characterization: Solidification and Casting

A Model for α-Al(Mn,Fe)Si Crystals ... 197
Christian J. Simensen and Are Bjørneklett

Casting Characteristics of High Cerium Content Aluminum Alloys 205
David Weiss, Orlando Rios, Zachary Sims, Scott McCall, and Ryan Ott

In Situ Observation of Fragmentation of Primary Crystals by Ultrasonic Cavitation in Water .. 213
Feng Wang, Iakovos Tzanakis, Dmitry Eskin, Jiawei Mi, and Thomas Connolley

The Enhancement of Mechanical Properties of A356 Alloy Solidified at Lower Cooling Rate via Effectively Grain Refinement 221
Yijie Zhang, Shouxun Ji, and Zhongyun Fan

Secondary Aluminum Alloys Processed by Semisolid Process for Automotive Application ... 227
F. D’Errico and D. Mattavelli

Integrated Casting-Extrusion (ICE) of an AA6082 Aluminium Alloy 235
Shohreh Khorsand and Yan Huang

On Porosity Formation in Al−Si−Cu Cast Alloys 243

Part VII Aluminum Alloys, Processing and Characterization: Characterization

Algorithm for Finding the Correlation Between the Properties of Wrought Aluminum Alloys, the Chemical Composition and the Processing Parameters ... 259
Varužan M. Kevorkijan, Branko Hmelak, Peter Cvahte, Sara Hmelak, Vukašin Dragojević, Uroš Kovačec, Marina Jelen, and Darja Volšak

Analysis of an Aluminium Alloy Containing Trace Elements 265
Christian J. Simensen, Stephan Kubowicz, Børge Holme, and Joachim S. Graff

Determination of Aluminum Oxide Thickness on the Annealed Surface of 8000 Series Aluminum Foil by Fourier Transform Infrared Spectroscopy 273
Özlem İnanç Uçar, Ayten Ekin Meşe, Onur Birbaşar, Murat Dündar, and Durmuş Özdemir

Using Guard Bands to Accommodate Uncertainty in the Spark AES Analysis of Aluminum or Aluminum Alloys When Determining Compliance with Specified Composition Limits .. 279
Thomas Belliveau, Denis Choquette, Olivier Gabis, Michael Ruschak, John Sieber, Albert Wills, and Rebecca Wyss
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Marking and 3D Imaging of Aluminum Products</td>
<td>289</td>
</tr>
<tr>
<td>Alex Fraser, Michael Dallaire, and Xavier P. Godmaire</td>
<td></td>
</tr>
<tr>
<td>Production and Certification of Arconic Certified Reference Materials</td>
<td>293</td>
</tr>
<tr>
<td>Jené L. Jacobs, Michael L. Ruchak, John L. Genna, Keith K. Trischan,</td>
<td></td>
</tr>
<tr>
<td>Louis A. Bono, and Samantha L. Stephens</td>
<td></td>
</tr>
<tr>
<td>Characterization of Large Strain Extrusion Machining (LSEM) of AA7050</td>
<td>301</td>
</tr>
<tr>
<td>Daniel R. Klenosky, David R. Johnson, Srinivasan Chandrasekar,</td>
<td></td>
</tr>
<tr>
<td>and Kevin P. Trumble</td>
<td></td>
</tr>
<tr>
<td>Influence of Trace Element Additions on Fe Bearing Intermetallic</td>
<td>305</td>
</tr>
<tr>
<td>Solidification of a 6063 Al Alloy</td>
<td></td>
</tr>
<tr>
<td>S. Kumar, J. Malisano, Y. Ito, and K.A.Q. O’Reilly</td>
<td></td>
</tr>
</tbody>
</table>

Part VIII Aluminum Alloys, Processing and Characterization: Heat Treatment

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Optimization of the Homogenization Treatment of AA7075</td>
<td>315</td>
</tr>
<tr>
<td>Gheorghe Dobra, Ioan Sava, Marin Petre, and Gheorghe Popa</td>
<td></td>
</tr>
<tr>
<td>Precipitation Modeling and Validation of Al–5% Cu–0.4% Mn Alloy Using Quench Factor Analysis</td>
<td>327</td>
</tr>
<tr>
<td>Yisen Hu, Gang Wang, Wenguang Wang, Mao Ye, and Yiming Rong</td>
<td></td>
</tr>
<tr>
<td>Young’s Modulus of Al–Si–Mg–Cu Based Alloy Under Different Heat Treatment Processes</td>
<td>335</td>
</tr>
<tr>
<td>Sajjad Amirkhanlou, Yijie Zhang, Shouxun Ji, and Zhongyun Fan</td>
<td></td>
</tr>
<tr>
<td>Intergranular Corrosion Investigation on EN-AW 6082 Redraw Rod</td>
<td>343</td>
</tr>
<tr>
<td>Luisa Marzoli, Dominique Cance, Christiane Matthies, Magali Guizard,</td>
<td></td>
</tr>
<tr>
<td>Peter Baumgart, and Hubert Koch</td>
<td></td>
</tr>
<tr>
<td>The Influence of Process Parameters and Themomechanical History on Streaking Defects in AA6060 Extrusions</td>
<td>371</td>
</tr>
<tr>
<td>Steven Babaniaris, Aiden Beer, and Matthew R. Barnett</td>
<td></td>
</tr>
<tr>
<td>Effect of Heat-Treatment on Microstructure and Mechanical Properties of Sonicated Multicomponent AlMgSiCuZn Alloy</td>
<td>379</td>
</tr>
<tr>
<td>Kwangjun Euh, Jae-Gil Jung, Eun-ji Baek, Jung-Moo Lee, and Hyoung-Wook Kim</td>
<td></td>
</tr>
<tr>
<td>Effect of Interrupted Quenching on Al–Zn–Mg–Cu Alloys</td>
<td>385</td>
</tr>
<tr>
<td>Gernot K.-H. Kolb, Helmut Antrekowitsch, Daniel Pöschmann, Peter J. Uggowitzer, and Stefan Pogatscher</td>
<td></td>
</tr>
</tbody>
</table>

Part IX Aluminum Alloys, Processing and Characterization: Plasticity and Mechanical Behavior

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Yield Criterion for Description of Plastic Deformation of Face-Centered Cubic Single Crystals</td>
<td>393</td>
</tr>
<tr>
<td>Nitin Chandola, Crystal Pasiliao, Oana Cazacu, and Benoit Revil-Baudard</td>
<td></td>
</tr>
<tr>
<td>Quantifying As-Cast and Homogenized AA7050 Mechanical Properties Through Compression Testing</td>
<td>399</td>
</tr>
<tr>
<td>Yunbo Wang, Matthew John M. Krane, and Kevin P. Trumble</td>
<td></td>
</tr>
<tr>
<td>Determining a Stable Texture Condition Under Complex Strain Path Deformations in Face Centered Cubic Metals</td>
<td>409</td>
</tr>
<tr>
<td>Usman Ali, Abhijit Brahme, Raja K. Mishra, and Kaan Inal</td>
<td></td>
</tr>
</tbody>
</table>
Microstructural Transition and Elevated Temperature Tensile Properties of Modified Al–Si–Cu–Mg Alloys .. 419
Mehdi Rahimian, Shouxun Ji, Paul Blake, Douglas Watson, and Zhongyun Fan

Effect of Alloying Elements on Anneal-Hardening Behavior of Aluminum Alloy Foils .. 427
Takashi Suzuki, Shigeru Kuramoto, Masaya Endo, and Qi Cui

Increasing Strength and Corrosion Resistance of AlMgSi Alloys by Tailor-Made Thermomechanical Processing ... 433
A. Wimmer

Microstructural Optimization of a High Mechanical Properties Aluminum Alloy By Using CobaPress Process .. 439
Mamadou Balde, Christophe Desrayaud, Véronique Bouvier, and Frédéric Perrier

Cyclic Stress-Strain Behavior and Low Cycle Fatigue Life of AA6061 Aluminum Alloy .. 447
F.A. Mirza, K. Liu and X. -G. Chen

Part X Aluminum Alloys, Processing and Characterization: Poster Session

Corrosion of Al–Mg Alloys in Ethanol .. 455
Gustavo Raúl Kramer, Estefanía Gauto, Roberto S. Rozicki, Claudia Marcela Méndez, and Alicia Esther Ares

Warm Pressing of Al Powders: An Alternative Consolidation Approach .. 463
Peter Krizik, Martin Balog, Oto Bajana, Maria Victoria Castro Riglos, and Peter Svec Sr.

Part XI Aluminum Reduction Technology: Dry Scrubbing, Alumina Transport and Dissolution

Spreading of Alumina and Raft Formation on the Surface of Cryolitic Bath .. 473
Csilla Kaszás, László Kiss, Sándor Poncsák, Sébastien Guérard, and Jean-François Bilodeau

Fluoride Capture Capacity of SGA: The Interplay Between Particle and Pore Size Distributions .. 479
Gordon E.K. Agbenyegah, Grant J. McIntosh, Margaret M. Hyland, and James B. Metson

Predictive Formula for the Competitive Adsorption of HF and SO₂ on Smelter Grade Alumina Used in Dry Scrubbing Applications .. 487
Stephen J. Lindsay, Neal R. Dando, and Stephan Broek

Pot Gas Treatment at High Gas Temperatures .. 495
Anders Sørhuus and Sivert Ose

Influence of Handling Parameter on Powder Properties .. 501
Peter Hilgraf, Jan Paepcke, and Arne Hilck

Part XII Aluminum Reduction Technology: Anode Effect and PFC Emissions

Preventive Treatment of Anode Effects Using on-Line Individual Anode Current Monitoring .. 509
Lukas Dion, Charles-Luc Lagacé, François Laflamme, Antoine Godefroy, James W. Evans, László I. Kiss, and Sándor Poncsák
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in EGA Jebel Ali Potroom GHG Emissions</td>
<td>519</td>
</tr>
<tr>
<td>Daniel Whitfield, Sergey Akhmetov, and Najeeba Al-Jabri</td>
<td></td>
</tr>
<tr>
<td>Partial Anode Effect in a Two-Compartment Laboratory Alumina</td>
<td>525</td>
</tr>
<tr>
<td>Reduction Cell</td>
<td></td>
</tr>
<tr>
<td>Henrik Ashheim, Thor A. Aaenang, Wojciech Gębarowski, Espen Sandnes,</td>
<td></td>
</tr>
<tr>
<td>Asbjørn Solheim, and Geir M. Haarberg</td>
<td></td>
</tr>
<tr>
<td>Co-evolution of Carbon Oxides and Fluorides During the Electrowinning</td>
<td>533</td>
</tr>
<tr>
<td>of Aluminium with Molten NaF–AlF₃–CaF₂–Al₂O₃ Electrolytes</td>
<td></td>
</tr>
<tr>
<td>M.M.R. Dorreen, M.M. Hyland, R.G. Haverkamp, J.B. Metson, Ali Jassim,</td>
<td></td>
</tr>
<tr>
<td>B.J. Welch, and A.T. Tabereaux</td>
<td></td>
</tr>
<tr>
<td>Part XIII Aluminum Reduction Technology: Cell Lining Materials</td>
<td></td>
</tr>
<tr>
<td>Chemical Stability of Thermal Insulating Materials in Sodium</td>
<td>543</td>
</tr>
<tr>
<td>Vapour Environment</td>
<td></td>
</tr>
<tr>
<td>Raymond Luneng, Søren N. Bertel, Jørgen Mikkelsen, Arne P. Ratvik,</td>
<td></td>
</tr>
<tr>
<td>and Tor Grande</td>
<td></td>
</tr>
<tr>
<td>Aging of Insulating Linings in Aluminium Electrolysis Cells</td>
<td>551</td>
</tr>
<tr>
<td>Ove Paulsen, Christian Schøning, Ove Darell, and Arne Petter Ratvik</td>
<td></td>
</tr>
<tr>
<td>Cathode Wear Based on Autopsy of a Shutdown Aluminium Electrolysis</td>
<td>561</td>
</tr>
<tr>
<td>Cell</td>
<td></td>
</tr>
<tr>
<td>Samuel Senanu, Christian Schøning, Stein Rorvik, Zhaohui Wang,</td>
<td></td>
</tr>
<tr>
<td>Arne P. Ratvik, and Tor Grande</td>
<td></td>
</tr>
<tr>
<td>SPL Recycling and Re-processing</td>
<td>571</td>
</tr>
<tr>
<td>Victor Mann, Vitaliy Pingin, Aleksey Zherdev, Yuriy Bogdanov,</td>
<td></td>
</tr>
<tr>
<td>Sergey Pavlov, and Vladimir Somov</td>
<td></td>
</tr>
<tr>
<td>Alternative Applications of SPL: Testing Ideas Through Experiments</td>
<td>579</td>
</tr>
<tr>
<td>and Mathematical Modeling</td>
<td></td>
</tr>
<tr>
<td>Duwei Yu, Vishnuvardhan Mambakkam, Donghui Li, Kinnor Chattopadhyay,</td>
<td></td>
</tr>
<tr>
<td>and Lei Gao</td>
<td></td>
</tr>
<tr>
<td>Part XIV Aluminum Reduction Technology: Cell Voltage and Pot Control</td>
<td></td>
</tr>
<tr>
<td>Clustering Aluminum Smelting Potlines Using Fuzzy C-Means and K-Means</td>
<td>589</td>
</tr>
<tr>
<td>Algorithms</td>
<td></td>
</tr>
<tr>
<td>Flávia A.N. de Lima, Alan M.F. de Souza, Fábio M. Soares, Diego</td>
<td></td>
</tr>
<tr>
<td>Lisboa Cardoso, and Roberto C.L. de Oliveira</td>
<td></td>
</tr>
<tr>
<td>Application of Multivariate Statistical Process Control with STARprobe™</td>
<td>599</td>
</tr>
<tr>
<td>Measurements in Aluminium Electrolysis Cells</td>
<td></td>
</tr>
<tr>
<td>Jean-Pierre Gagné, Rémi St-Pierre, Pascal Côté, Pascal Lavoie, and</td>
<td></td>
</tr>
<tr>
<td>Albert Mulder</td>
<td></td>
</tr>
<tr>
<td>Study of the Impact of Anode Slots on the Voltage Fluctuations</td>
<td>607</td>
</tr>
<tr>
<td>in Aluminium Electrolysis Cells, Using Bubble Layer Simulator</td>
<td></td>
</tr>
<tr>
<td>Sándor Poncsák, László I. Kiss, Sébastien Guérard, and Jean-François</td>
<td></td>
</tr>
<tr>
<td>Bilodeau</td>
<td></td>
</tr>
<tr>
<td>Detecting, Identifying and Managing Systematic Potline Issues with</td>
<td>615</td>
</tr>
<tr>
<td>Generation 3 Process Control</td>
<td></td>
</tr>
<tr>
<td>Nursiani Indah Tjahyono, Yashuang Gao, David S. Wong, Ron Etzion,</td>
<td></td>
</tr>
<tr>
<td>and Albert Mulder</td>
<td></td>
</tr>
<tr>
<td>Predicting Instability and Current Efficiency of Industrial Cells</td>
<td>623</td>
</tr>
<tr>
<td>Patrice Côté, Olivier Martin, Bertrand Allano, and Véronique</td>
<td></td>
</tr>
<tr>
<td>Dassylva-Raymond</td>
<td></td>
</tr>
<tr>
<td>Part XV</td>
<td>Aluminum Reduction Technology: Electrolyte and Fundamentals</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Sodium in Aluminium as a Cell Performance Indicator: A Quantitative Framework</td>
<td>633</td>
</tr>
<tr>
<td>Asbjørn Solheim</td>
<td></td>
</tr>
<tr>
<td>Bauxite Processing via Chloride Route to Produce Chloride Products and Subsequent Electrolysis of Aluminium Chloride to Produce Aluminium Metal</td>
<td>641</td>
</tr>
<tr>
<td>Sankar Namboothiri and Subash Mallick</td>
<td></td>
</tr>
<tr>
<td>Stability of Chlorides in Cryolitic Electrolyte</td>
<td>649</td>
</tr>
<tr>
<td>Xiangwen Wang and Luis Espinoza-Nava</td>
<td></td>
</tr>
<tr>
<td>Role of Heat Transfer and Interfacial Phenomena for the Formation of Carbon Oxides in Smelting Cells</td>
<td>659</td>
</tr>
<tr>
<td>Mark M.R. Dorreen, Nolan E. Richards, Alton. T. Tabereaux, and Barry J. Welch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part XVI</th>
<th>Aluminum Reduction Technology: Modelling and Cell Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improving the Understanding of Busbar Design and Cell MHD Performance</td>
<td>671</td>
</tr>
<tr>
<td>Alexander Arkhipov, Abdalla Alzaroori, Amal Al Jasmi, and Vinko Potocnik</td>
<td></td>
</tr>
<tr>
<td>LES Turbulence Modeling Approach for Molten Aluminium and Electrolyte Flow in Aluminium Electrolysis Cell</td>
<td>679</td>
</tr>
<tr>
<td>Mounir Baiteche, Seyed Mohammad Taghavi, Donald Ziegler, and Mario Fafard</td>
<td></td>
</tr>
<tr>
<td>MHD of Large Scale Liquid Metal Batteries</td>
<td>687</td>
</tr>
<tr>
<td>Valdis Bojarevics and Andrejs Tucs</td>
<td></td>
</tr>
<tr>
<td>Low Energy Consumption Cell Designs Involving Copper Inserts and an Innovative Busbar Network Layout</td>
<td>693</td>
</tr>
<tr>
<td>Marc Dupuis</td>
<td></td>
</tr>
<tr>
<td>Minimizing Cathode Voltage Drop by Optimizing Cathode Slot Design</td>
<td>705</td>
</tr>
<tr>
<td>Ralph Friedrich, Frank Hiltmann, Andreas Lützerath, Richard Meier, Markus Pfeffer, Till Reek, and Oscar Vera Garcia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part XVII</th>
<th>Aluminum Reduction Technology: Potroom Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crane Electrical Insulation Monitoring in Potlines New CANDIT™ 4.0 Development</td>
<td>715</td>
</tr>
<tr>
<td>Serge Despinasse and Eric Norel</td>
<td></td>
</tr>
<tr>
<td>Surviving an Extended Power Outage After a Break Down in the Sub Station</td>
<td>723</td>
</tr>
<tr>
<td>T. Reek and R. Düssel</td>
<td></td>
</tr>
<tr>
<td>Retrofit of Damaged Corner Risers by Means of Bolted Connections</td>
<td>731</td>
</tr>
<tr>
<td>André Felipe Schneider, Donald P. Ziegler, Maxime Pouliot, Daniel Richard, Jason Robillard, Jérémie Blais, Olivier Charette, and Pouya Zangeneh</td>
<td></td>
</tr>
<tr>
<td>Theory and Practice of High Temperature Gas Baking Technology for Aluminium Electrolysis Cells</td>
<td>739</td>
</tr>
<tr>
<td>Chengbo Wu, Yingwu Li, and Xudong Wang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part XVIII</th>
<th>Aluminum Reduction Technology: Technology Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation of D18+ Cell Technology at EGA's Jebel Ali Smelter</td>
<td>749</td>
</tr>
<tr>
<td>Daniel Whitfield, Sergey Akhmetov, Jose Blasques, and Harishchandra Devadiga</td>
<td></td>
</tr>
</tbody>
</table>
Integrating a New Smelter Supervision HMI in Existing Control Systems at ALBRAS 759
Vanderlei Oliveira Fernandes, Geir Sandnes, Leonel Vicente Mota Ivo, and Rogério Cosendey Labanca

DX+ Ultra—EGA High Productivity, Low Energy Cell Technology 769
Ali Alzarouni, Abdalla Alzarooni, Nadia Ahli, Sergey Akhmetov, and Alexander Arkhipov

Potroom HF Emission Reduction by Anode Inert Tray Technology
Performance of ALRO Industrial 1st of Class 775
Vincent Verin, El Hani Bouhabila, Jérémy Neveu, Serge Despinasse, Gheorghe Dobra, and Marian Cilianiu

Enabling Efficient Heat Recovery from Aluminium Pot Gas 783
Daniel Perez Clos, Trond Andresen, Petter Nekså, Sverre Gullikstad Johnsen, and Ragnhild Elizabeth Aune

The Successful Implementation of AP40 Technology at Kitimat 793
Patrice Desrosiers, Martin Robitaille, Pierre Luc Voyer, Silvino Caetano, René Gariepy, Olivier Martin, and Pascal Robert

Part XIX Cast Shop Technology: Continuous Strip Casting

Effect of Grain Refiners on Aluminum Twin Roll Casting Process 803
Yu Matsui, and Koichi Takahashi

Influence of Process Conditions on Segregation Behavior in Twin-Roll Casting of an AlFeSi-Alloy 811
Christian W. Schmidt, Dag Mortensen, and Kai-Friedrich Karhausen

Effect of Magnesium Content on Microstructure and Mechanical Properties of Twin-Roll Cast Aluminum Alloys 821
Onur Meydanoglu, Cemil Işıksaçan, Hatice Mollaoğlu Altuner, Mert Günyüz, and Onur Bırbaşar

Influence of Sticking on the Roll Topography at Twin-Roll Casting of Aluminum Alloys 827
Olexandr Grydin, Florian Nürnberg, and Mirko Schaper

Material Surface Roughness Change in Twin Roll Casting of Aluminium as Cast Sheet Product 833
Ceyhun Kuru, Sadik Kaan Ipek, Eda Dağdelen, Özgür Özşahin, and Ali Ulus

Twin-Roll Casting of Aluminum-Steel Clad Strips: Static and Dynamic Mechanical Properties of the Composite 843
M. Stolbchenko, O. Grydin, and M. Schaper

Part XX Cast Shop Technology: Foundry and Shape Casting

Multi-Component High Pressure Die Casting (M-HPDC): Influencing Factors on the Material Temperature During the Joining of Metal-Plastic-Hybrids 855
Patrick Messer, Uwe Vroomen, and Andreas Bührig-Polaczek

X-Ray Computed Tomographic Investigation of High Pressure Die Castings 861
Shouxun Ji, Douglas Watson, and Zhongyun Fan

The Comparison of Intensive Riser Cooling of Castings After Solidification in Three Classic Metals 867
Haolong Shangguan and Jinwu Kang
Sequential Gravity Casting in Functionally Graded Aluminum Alloys Development ... 877
Mario Rosso, Silvia Lombardo, and Federico Gobber

Assessment of Eutectic Modification Level in Al–Si Alloys Via Thermal Analysis ... 885
Maiada S. Abdelrahman, Mahmoud T. Abdu, and Waleed Khalifa

Part XXI Cast Shop Technology: Melting, Energy, and Dross
Application and Results of Oxipyr® Diluted Combustion in Aluminum Furnaces .. 899
Michael Potesser and Johannes Rauch

Case Study of Magnetically-Stirred Casting Furnaces at New Zealand Aluminium Smelters Limited .. 909
Ray Cook, Marcos Varayud, Steve Iijima, and Eishin Takahashi

Energy Efficiency Status-Quo at UK Foundries: The “Small-Is-Beautiful” Project .. 917
Mark R. Jolly, Konstantinos Salonitis, Fiona Charnley, Peter Ball, Hamid Mehrabi, and Emanuele Pagone

Optimization of Recovery Efficiency for Briquetted Aluminum Chips up to Briquetting Parameters 925
Ali Ulus, Hamdi Ekici, and Erdem Güler

The Evaluation of Hot Dross Processing Systems ... 933
David J. Roth

Part XXII Cast Shop Technology: DC Casting and Macrosegregation
A Study on DC Casting Trough/Launder Design and Material Selection ... 941
Bin Zhang

Critical Role of Thermal Management During Cast Start-Up of the DC Casting Process .. 949
Sabrina Guy, André Larouche, and Josée Colbert

Modelling and Analysis of a Horizontal Direct Chill Casting Process 955
Gardar Gardarsson, Throstur Gudmundsson, Magnus Th Jonsson, and Halldor Palsson

Circulation of Grains During Ingot Casting ... 967
Carolyn Joseph, Samuel R. Wagstaff, and Antoine Allanore

Minimization of Macrosegregation Through Jet Erosion of a Continuously Cast Ingot .. 973
Samuel R. Wagstaff and Antoine Allanore

Full Size Measurement and Simple Prediction on Macro Segregation of Aluminum Alloys Elements in Industrial Direct Chill Casting Slab .. 981
Tatsuya Yamada, Nobuhito Ishikawa, Takashi Kubo, and Koichi Takahashi

Ultrasonic Assisted Reduction of Hot-Tearing During High-Speed DC Casting of 6000 Series Aluminum Alloys .. 989
Sergey Komarov, Yasuo Ishiwata, and Yoshihiro Takeda
Part XXIII Cast Shop Technology: Grain Refining and Solidification

Effect of Ultrasonic Processing on a Direct Chill Cast AA6082 Aluminium Alloy ... 997
G. Salloum-Abou-Jaoude, D.G. Eskin, C. Barbatti, P. Jarry, M. Jarrett, and Z. Fan

Shear Induced Grain Refinement of a Continuously Cast Ingot 1005
Samuel R. Wagstaff and Antoine Allanore

Microstructure Control in A356 Al-Si Alloy Via Ultrasonic Melt Treatment 1013
Waleed Khalifa, Mahmoud T. Abdu, Maiada S. Abdelrahman, and Yoshiki Tsunekawa

Grain Refiner Sedimentation in the Launder System of Twin Roll Casting and Application of Electromagnetic Stirring .. 1021
Onur Birbasar, Murat Can Erdemir, Vedat Topaloglu, Cemil Isiksan, Onur Meydanoğlu, Mert Günüüz, Hatice Mollaoğlu Altuner, and Murat Dündar

Thermal Analysis of Grain Refining in A319 Alloys .. 1027
Waleed Khalifa

Peritectic Coupled Growth Solidification—a Review ... 1035
Peiman Shahbeigi-Roodposhti and Harold Brody

Part XXIV Cast Shop Technology: Casthouse Management and Automation

Overpressure Due to a Molten Aluminum and Water Explosion in a Casthouse ... 1045
Jennifer Woloshyn, Andrew Gerber, Tom Plikas, Duane Baker, and Adam Blackmore

Automation and Optimization of Sow Casting in Alouette .. 1053
JF Desmeules, JB Néron, and JP Bérubé

Radio Frequency Identification (RFID) Technology for the Aluminum Industry .. 1061
Valérie Langelier, Guillaume Parenteau, Martin Lysight, and Maryse Beaudry

Semi Finished Products Traceability Improvement with Laser Marking 1069
J.F. Desmeules, B. Côté, and J.D. Dufour

Structural Integrity Assessment of Pressurized Ladles for Aluminum Smelting 1079
Maher Al-Dojayli, Pouya Zangeneh, Alexandre Lamoureux, Daniel Richard, Pierre-Louis Allaire, and Hamid Ghorbani

Has Recent Advances in Direct Chill Casting Made Us Less Safe? 1089
Alex W. Lowery

Part XXV Cast Shop Technology: Recycling and Sustainability Joint Session

Tramp Element Accumulation and Its Effects on Secondary Phase Particles 1097
Samuel R. Wagstaff, Robert B. Wagstaff, and Antoine Allanore
Dross Formation Mechanisms of Thermally Pre-Treated Used Beverage Can Scrap Bales with Different Density 1105
J. Steglich, R. Dittrich, G. Rombach, M. Rosefort, B. Friedrich, and A. Pichat

Influence of Coating and De-Coating on the Coalescence of Aluminium Drops in Salt .. 1115
Stefano Capuzzi, Anne Kvithyld, Giulio Timelli, Arne Nordmark, and Thorvald Abel Engh

The Scale-Up of High Shear Processing for the Purification of Recycled Molten Scrap Aluminium Alloy: Key Features of Fluid Flow .. 1123
Mingming Tong, Jayesh B. Patel, Ian Stone, Zhongyun Fan, and David J. Browne

Centrifugal Casting of Al–Si Scrap 1131
Aya Assem, Shimaa El-Haddad, and Iman El Mahallawi

Improved Recyclability of Cast Al-Alloys by Engineering β-Al$_6$Fe$_2$Si$_2$ Phase .. 1139
C.B. Basak and N. Hari Babu

Part XXVI Electrode Technology: Electrodes: Raw Materials and Anode Quality

Influence of Calcination Temperature and Sulfur Level on Coke Properties ... 1151
Victor Buzunov, Victor Mann, Sergey Khramenko, and John Johnson

Pilot Anode Properties of Binder Pitches Softening Between 110 and 150 °C .. 1157
Winfried Boenigk, Christopher Kuhnt, Jens Stiegert, Joris Claes, and Les Edwards

Uniform Bulk Density for Calcined Petroleum Coke 1165
Ravindra Narayan Narvekar, Gajanan Bandodkar, and Jagmohan Chhabra

Use of Thermally Desulfurized Shaft CPC for Anode Production ... 1173
Les Edwards, Kevin Harp, and Christopher Kuhnt

Anode Carbon Aggregate Packing Description Compared to Relevant Industrial and Engineering Practises 1183
Bjarte Øye and Lorentz Petter Lossius

CPC Testing and Relationship Between Coke and Anode Physical Properties .. 1193
Marvin L. Lubin, Les Edwards, Kevin Harp, and Christopher Kuhnt

Effect of Coke Properties on the Bubble Formation at the Anodes During Aluminium Electrolysis in Laboratory Scale 1203
Wojciech Gebarowski, Arne Petter Ratvik, Stein Rørvik, Lorentz Petter Lossius, Hogne Linga, and Ann Mari Svensson

Anode Quality Improvement at Inalum Smelter 1213
S.S. Sijabat, Firman Ashad, Ade Buandra, and Edi Mugiono
Coke Produced from Lower-Oxygen Fast-Pyrolysis Oil,
A New Approach to Produce Renewable Anode Raw Materials 1221
Yaseen Elkasabi, Hans Darmstadt, and Akwasi A. Boateng

Part XXVII Electrode Technology: Electrodes: Baking/Characterization

25 Years of Natural Gas Purged Infrared Pyrometer Temperature
Measurement for the Operation of Open-Top Anodes Baking Furnaces 1231
Yvon Menard

Characterization of Prebake Anodes by Micro X-ray Computed
Tomography .. 1237
Stein Rørvik and Lorentz Petter Lossius

Development of Techniques and Tools for the Determination
of Carbon Anode Quality .. 1247
Duygu Kocaefe, Yasar Kocaefe, Dipankar Bhattacharyay,
Bazoumana Sanogo, Yao Ahoutou, Hang Sun, and Patrick Coulombe

Flow Detection Module—A New Model to Predict the
Flow in Open Pit Anode Baking Furnaces .. 1255
Detlef Maiwald, Domenico Di Lisa, Florian Krummrich, and Frank Heinke

Formation of Carbon Build-Up on the Flue Wall of Anode
Baking Furnace .. 1265
Zhaohui Wang, Stein Rørvik, Arne Petter Ratvik, and Tor Grande

Identification of the Stress Intensity Factor of Carbon Cathode
by Digital Image Correlation .. 1275
Donald Picard, Luca Sorelli, Julien Réthoré, Houshang Alamdari,
Marc-Antoine Bari, and Mario Fafard

Investigation of Spent Refractory Lining in an Anode
Baking Furnace ... 1281
Trond Brandvik, Zhaohui Wang, Arne Petter Ratvik, and Tor Grande

Non-Destructive Testing of Baked Anodes Based
on Modal Analysis and Principal Component Analysis 1289
Moez Ben Boubaker, Donald Picard, Carl Duchesne, Jayson Tessier,
Houshang Alamdari, and Mario Fafard

3D Automated Anode Stub Inspection System 1299
Jean-Pierre Gagné, Rémi St-Pierre, Pascal Côté, and Harold Frenette

Impact of Cast Iron Degradation and Cathode Block Erosion
on the Current Path in the Cathodic Assembly of Aluminum
Production Cells .. 1307
Martin Brassard, Marc LeBreux, Martin Désilets, Gervais Soucy, Martin Forté,
and Jean-François Bilodeau

Part XXVIII Electrode Technology: Electrode Design and
Performance

Finite Element Analysis of Slot Size Effect on the
Thermal-Electrical Behaviour of the Anode .. 1315
Hydrodynamic and Thermoelectric 3D Mathematical Model of Aluminium Electrolysis Cell to Investigate Slotted Carbon Anode Efficiency .. 1325
Mounir Baiteche, Hicham Chaouki, Edward Gosselin, Alain Jacques, Houshang Alamdari, and Mario Fafard

Gas Anodes Made of Porous Graphite for Aluminium Electrowinning .. 1333
Babak Khalaghi, Henrik Gudbrandsen, Ole Sigmund Kjos, Karen Sende Osen, Ove Bjørn Paulsen, Tommy Mokkelbost, and Geir Martin Haarberg

The Impact of Anode Nails on the Stub to Carbon Electrical Contact Resistance of Anode Assemblies with Simulated Corroded Stubs .. 1341
W. Berends

Xelios 2.0: Return on Experience for the Advanced Eco-Designed Vibro-Compactor .. 1349
Vincent Philippaux and Bastien Aymard

Production of NiFe₂O₄ Nanocermet for Aluminium Inert Anode .. 1357
Wu Xianxi, Zhu Weidong, Luo Kunlin, and Wu Song

Reducing Cathode Voltage Drop and Reducing Peak Current Density by Use of Cathode Nails Across the Carbon to Cast Iron Interface .. 1365
William Berends

Hexapod Fleet Migration in Order to Upgrade to AP40LE Technology .. 1375
Marc Gagnon and Jonathan B. Reichelson

The Impact of Increased Anode Size and Amperage Creep on Anode Management .. 1385
James Anson, René Trudel, and Bertrand Vincent

The Contributions of Prof. Thorvald Engh and Christian Simensen to the Science and Technology of Melt Refining and Oxidation .. 1397
Anne Kvithyld and John Grandfield

The Fundamentals of Forming Microbubbles in Liquid Metal Systems .. 1403
Roderick LL. Guthrie, Mihaela M. Isaac, and Roger T. Ren

A Holistic Approach to Molten Metal Cleanliness .. 1411
D. Corleen Chesonis

Results of Trials with a Multi Stage Filtration System Employing a Cyclone .. 1419
John Courtenay, Marcel Rosefort, and Phil Jankowski

Developments in Inclusion Removal Technology .. 1429
John Grandfield
Part XXX The Science of Melt Refining: An LMD Symposium
in Honor of Christian Simensen and Thorvald Abel Engh:
TAE/CJS II Degassing and Oxidation

Overview of Ultrasonic Degassing Development 1437
Dmitry G. Eskin

Modelling of Hydrogen Removal in Gas Fluxing of Molten Aluminium 1445
Dag Mortensen, Jinsong Hua, Arild Håkonsen, Terje Haugen, and John Olav Fagerlie

Oxide Skin Strength on Molten AA5XXX Aluminum
Alloy—Effect of Beryllium and Alternatives 1451
Martin Syvertsen

Understanding of Interactions Between Pyrolysis Gases
and Liquid Aluminum and Their Impact on Dross Formation 1457
R. Dittrich, B. Friedrich, G. Rombach, J. Steglich, and A. Pichat

Effects of 2 ppm Beryllium on the Oxidation of a 5XXX
Aluminum Alloy at Temperatures Between 500 and 750 °C 1465
Nicholas Smith, Brian Gleeson, Anne Kvithyld, and Gabriella Tranell

The Use of Nitrogen to Degas Molten Aluminum—Comparison
of Metallurgical Results with Argon and Nitrogen Used in an ACD™ 1475
Étienne Tremblay and Bruno Maltais

Author Index .. 1481

Subject Index .. 1487
Arne P. Ratvik is a senior scientist at SINTEF Materials and Chemistry in Trondheim, Norway. He has his M.Sc. and Ph.D. in inorganic chemistry from NTNU (Norwegian University of Science and Technology) followed by a post doc period at the University of Tennessee, all related to molten salt chemistry and electrolytic production of light metals. He has industrial research and production management experience from Elkem and Falconbridge Nikkelverk (currently Glencore Nikkelverk), respectively, followed by several positions in SINTEF (research director, research manager and senior scientist). He served a four-year term as head of Department of Materials Science and Engineering at NTNU. Dr. Ratvik’s current research interests are mainly within aluminum electrolysis with emphasis on materials chemistry and electrochemical performance of carbon anodes and cathodes, besides having experience from ferro-alloy and silicon pyrometallurgical processes and metal electrowinning in aqueous solutions. He has been project manager of several large primary aluminum-related projects and co-authored more than 50 papers in addition to many company proprietary reports. He has served The Minerals, Metals & Materials Society (TMS) as session chair four times and subject chair for the Electrode Technology in 2015.
Program Organizers

Alumina and Bauxite

Ting-an Zhang is a full professor at Nonferrous Metallurgy of Northeastern University (NEU), China. He has his B.S., M.Sc., and Ph.D. in rare metal metallurgy, metallurgical physical chemistry and energy engineering respectively from NEU (Northeastern University), and studied at the National University of Science and Technology, Russia Federation, for half a year. He served a ten-year term as Dean of School of Metallurgy and Materials at NEU.

Dr. Zhang has more than 30 years’ experience in metallurgy process and technology. He is currently Director of Special Metallurgy and Process Engineering Institute, where his research activities are focused on alumina clean production with an emphasis on transformation of the red mud construction, besides pressure hydrometallurgy, SHS metallurgy, and physical and mathematic simulations of metallurgical processes and reactors. He has been project manager of more than 20 projects including National Key Research and Development Program, National Natural Science Fund and alumina-related projects for plants. Dr. Zhang has co-authored more than 300 papers and 7 books, and proposed more than 100 invention patents. His work on calcification-carbonation method for red mud treatment has been awarded both internationally and in China.

Aluminum Alloys, Processing, and Characterization

Yanjun Li is a full professor at Norwegian University of Science and Technology (NTNU), Norway. Yanjun has a Ph.D. degree in materials science and engineering. Before joining NTNU, he worked as a research metallurgist at Hydro Aluminium for 3 years, and research scientist and senior research scientist at SINTEF Materials and Chemistry for 6 years. Dr. Li’s research is focusing on physical metallurgy of aluminum alloys, including solidification and casting, heat treatment and phase transformation, deformation and mechanical properties, advanced microstructure characterization, and microstructure simulation model developments.
Aluminum Reduction Technology

Mark Dorreen After completing a Ph.D. focused on current efficiency measurement and anode effect gases, Mark Dorreen worked in various commercial and technical aspects of electric arc steelmaking for 10 years. He then returned to the Light Metals Research Centre at the University of Auckland in 2008, where he now holds the role of director, with responsibility for all the commercial activities and the day to day running of the centre.

Mark’s particular interests are in anode plant operations, in particular the rodding room, as well as aspects of potroom operations and pot emissions, and he has travelled widely to work on many LMRC projects, most frequently to smelters in China.

In addition to his LMRC role, Mark is also vice president–technical at Energia Potior Limited, a new company set up to commercialize the Shell Heat Exchanger technology developed at the University of Auckland.

Cast Shop Technology

Cast Shop Technology: Recycling and Sustainability Joint Session

David Gildemeister received a B.S. in metallurgical engineering at South Dakota School of Mines and Technology in 1993 and a Ph.D. in materials science and engineering from Carnegie Mellon University in 2016. He has worked for Alcoa (formerly Alcoa, Inc.) for more than 24 years. Thirteen years in four different production facilities as a process and product metallurgist have exposed him to numerous billet, ingot, and continuous casting processes, as well as hot rolling. For the past eleven years, he has conducted research and development in aluminum casting and solidification at the Arconic Technology Center in New Kensington, Pennsylvania.

Electrode Technology

Houshang Alamdari received his M.Sc. degree in 1996 and Ph.D. degree in 2000 from Université Laval, Canada. He pursued research activities at the Hydro-Quebec Research Institute, Canada, on the synthesis of nanocrystalline materials for hydrogen storage. He held the process director position at Nanox Inc, Canada, and was involved in the development and scale up of a production process for nanostructured perovskite-type materials for automotive catalysts. In 2006, he joined Laval University as professor at the Department of Mining, Metallurgy, and Materials Engineering, Université Laval, Canada. He is currently director of the Regal-Laval Research Center, where his research activities are focused on the anode manufacturing process for aluminum production.
The Science of Melt Refining: An LMD Symposium in Honor of Christian Simensen and Thorvald Engh

John Grandfield is the director of Grandfield Technology Pty Ltd, a consulting and technology firm, and adjunct professor at Swinburne University of Technology in the High Temperature Processing Group. John has a Bachelor of Applied Science degree in metallurgy (RMIT), an M.Sc. in mathematical modelling (Monash University), and a Ph.D. in materials science (University of Queensland).

John has 30 years’ experience in light metals research and technology in smelting, continuous casting, and metal refining (Rio Tinto Alcan, CASTcrc and CSIRO). He has conducted plant benchmarking audits, technology reviews, optimised existing technology, managed technology transfer, and developed and commercialised new cast house technologies. He remains active in research with a current focus on ingot cavity control and inclusion removal.

His work on direct chill and ingot casting of aluminium and magnesium has been awarded both internationally and within Australia. John is regularly invited to give training courses, participate in in-house innovation workshops, and conduct R&D program reviews around the world.

John has four patents, has published two book chapters, more than 50 conference, and journal papers, and has co-authored a book on DC casting of light metals. He is a member of the TMS Aluminum Committee and was editor of *Light Metals 2014*.

Anne Kvithyld is a senior scientist at SINTEF in Trondheim, Norway. She earned her Ph.D. from the Norwegian University of Science and Technology (NTNU) in 2003. She has been a visiting scholar at the Colorado School of Mines, USA. Her research interests are on production of metals, in particular refining and recycling. She is an active member of The Minerals, Metals & Materials Society (TMS).
Chairperson
Edward McRae Williams
Alcoa Inc
Pennsylvania, USA

Vice Chairperson
Arne P. Ratvik
SINTEF
Trondheim, Norway

Past Chairperson
Margaret M. Hyland
University of Auckland
Auckland, New Zealand

Light Metals Division Chair
Alan A. Luo
Ohio State University
Ohio, USA

Secretary
Stephen Broek
Hatch Ltd
Ontario, Canada

JOM Advisor
Pascal Lavoie
Light Metals Research Centre
Quebec, Canada

Member-At-Large
Stephen Broek
Hatch Ltd
Ontario, Canada

Members Through 2017

Thomas P. Clement, II
Alcoa US Primary Products
Texas, USA

Mark A. Cooksey
CSIRO
Victoria, Australia
Les C. Edwards
Rain CII Carbon LLC
Louisiana, USA

Gyan Jha
Kentucky, USA

Barry A. Sadler
Net Carbon Consulting Pty Ltd
Victoria, Australia

Members Through 2018

John F. Grandfield
Grandfield Technology Pty Ltd
Victoria, Australia

Kai F. Karhausen
Hydro Aluminium
Bonn, Germany

Edward McRae Williams
Alcoa Inc
Pennsylvania, USA

Members Through 2019

Pete Forakis
STAS Middle East Ltd FZE
Sharjah, United Arab Emirates

John V. Griffin
ACT LLC
New Jersey, USA

Margaret M. Hyland
University of Auckland
Auckland, New Zealand

Pascal Lavoie
Light Metals Research Centre
Quebec, Canada

Arne P. Ratvik
SINTEF
Trondheim, Norway

Hans-Werner Schmidt
Outotec GmbH
Oberursel, Germany

Alan David Tomsett
Pacific Aluminium
Queensland, Australia
Members Through 2020

Phil Black
Regain Materials
Melbourne, Australia

Kathie McGregor
CSIRO
Victoria, Australia