Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems—cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems, biological cellular networks, the dynamics of stock markets and of the Internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of opinions in social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence.

The three major book publication platforms of the Springer Complexity program are the monograph series “Understanding Complex Systems” focusing on the various applications of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative theoretical and methodological foundations, and the “Springer Briefs in Complexity” which are concise and topical working reports, case studies, surveys, essays and lecture notes of relevance to the field. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks to major reference works.

Editorial and Programme Advisory Board

Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA
Dan Braha, New England Complex Systems Institute and University of Massachusetts, Dartmouth, USA
Péter Érdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of Sciences, Budapest, Hungary
Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK
Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany
Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée, Marseille, France
Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan
Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA
Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of Warwick, Coventry, UK
Jürgen Kurths, Potsdam Institute for Climate Impact Research, University of Potsdam, Potsdam, Germany
Andrzej Nowak, Department of Psychology, Warsaw University, Poland
Hassan Qudrat-Ullah, School of Administrative Studies, York University, Toronto, ON, Canada
Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria
Frank Schweitzer, System Design, ETH Zürich, Zürich, Switzerland
Didier Sornette, Entrepreneurial Risk, ETH Zürich, Zürich, Switzerland
Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria
Understanding Complex Systems

Founding Editor: S. Kelso

Future scientific and technological developments in many fields will necessarily depend upon coming to grips with complex systems. Such systems are complex in both their composition – typically many different kinds of components interacting simultaneously and nonlinearly with each other and their environments on multiple levels – and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) promotes new strategies and paradigms for understanding and realizing applications of complex systems research in a wide variety of fields and endeavors. UCS is explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts, methods and tools of complex systems at all levels of description and in all scientific fields, especially newly emerging areas within the life, social, behavioral, economic, neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel applications of these ideas in various fields of engineering and computation such as robotics, nano-technology, and informatics; third, to provide a single forum within which commonalities and differences in the workings of complex systems may be discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes, and selected edited contributions aimed at communicating new findings to a large multidisciplinary audience.

More information about this series at http://www.springer.com/series/5394
Modeling Thermodynamic Distance, Curvature and Fluctuations
A Geometric Approach
Preface

This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to the people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first part of the textbook a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The content is organized as follows.

The first part of the textbook, consisting of four chapters, presents the main mathematical tools. Thus, Chap. 1 presents the historical background of the geometrization of mechanics and thermodynamics. In Chap. 2 some basic concepts are briefly reminded, such as the set theory, the relationships theory, and the theory of simple algebraic structures. Then, the essential concepts used in the theory of linear spaces are introduced. The chapter ends by presenting some results concerning the coordinate transformations and the classification of physical quantities in relation with these transformations. Chapter 3 describes the main types of vectors and the standard method of vector geometrization. Then elementary results of vector calculus are presented. The chapter ends with a very brief introduction to the exterior differential calculus, accompanied by some specific useful results. Chapter 4 describes results of Riemann geometry. Two approaches are presented. The first one is the classic approach. The second approach is based on the theory of differential manifolds and tangent spaces. Both approaches allow defining the tensors of different orders, the Riemann metric and the covariant differentiation, among others. The parallel between the two approaches is very useful for a deeper understanding of concepts.

The second part of the textbook, consisting of five chapters, refers to the application of geometric methods in equilibrium thermodynamics. Chapter 5 summarizes some results of equilibrium thermodynamics. The approach based on potentials is presented, including the standard procedures using the energy representation and the entropy representation. Finally, the extreme principles and the
mathematical conditions for thermodynamic stability are presented. Chapter 6 briefly shows some results of using tools of contact geometry in thermodynamics. Here only the first law of thermodynamics is geometrized. The chapter ends with a few examples of contact currents in thermodynamics. In Chap. 7 an approach based on statistical methods, which allows defining the notions of thermodynamic metric and thermodynamic distance, is presented. The second law of thermodynamics plays a key role in this context. The relationship between the thermodynamic distance and the entropy production is analyzed and links with the Gouy-Stodola theorem are highlighted. Horse-carrot type theorems are also introduced. The manner in which the thermodynamic curvature can be defined is exposed in Chap. 8. The chapter contains examples of calculation of thermodynamic curvature for simple systems. Chapter 9 presents a covariant theory of the thermodynamic fluctuations and analyzes the level of approximation introduced by the classical theory of fluctuations and its Gaussian approximation.

The textbook is a more extensive version of a section of the course of Advanced Thermodynamics presented for master students at the Faculty of Mechanical Engineering, Polytechnic University of Bucharest, starting from the 2003–2004 academic year. The textbook is presented with an ease of access for the readers with education in natural and technical sciences. Thus, most mathematical demonstrations of the theoretical results with higher degree of difficulty are omitted and references for the relevant literature are provided.

As usual, the preparation of such a work is the result of numerous interactions, discussions, consultations, and collaborations. It is a pleasure to remind here some of them. I received special support from colleagues in the European network CARNET (Carnot Network). This cooperation was institutionalized during the years 1994–1999 by two Copernicus projects on thermodynamic topics funded by the European Commission. In particular, I must thank Prof. Bjarne Andresen (University of Copenhagen), Prof. Ryszard Mrugala (University of Torun, Poland), and Dr. Lajos Diósi (Research Institute for Particle and Nuclear Physics, Budapest) whose publications were massively used in the present work. During the elaboration of the material I received technical support from Prof. Peter Salamon (University of San Diego). Also, discussions with Prof. Constantin Udriste (Polytechnic University of Bucharest) allowed a better understanding of the fundamentals of mathematics.

Viorel Badescu
Part I Mathematical Tools

1 Introduction ... 3
References ... 6

2 Algebraic Structures. Spaces. Reference Frames 9
2.1 Sets .. 9
2.2 Relations .. 11
 2.2.1 Equivalence Relations 12
 2.2.2 Ordering ... 12
2.3 Functions and Maps 13
2.4 Groups ... 14
 2.4.1 Homeomorphism 14
 2.4.2 Isomorphism 15
 2.4.3 Automorphism 15
2.5 Fields .. 15
2.6 Spaces ... 16
 2.6.1 Linear Spaces 16
 2.6.2 Unitary and Euclidean Spaces 23
 2.6.3 Affine Spaces 25
2.7 Equivalence Classes for Reference Frame Transformation 27
 2.7.1 Intrinsic Distance 28
 2.7.2 Orthogonal Transformations 29
 2.7.3 Classes of Physical Quantities 31
 2.7.4 Operations with Scalars and Vectors 35
References .. 40

3 Vector Calculus and Differential Forms 41
 3.1 Geometrization of Vectors 41
 3.1.1 Types of Vectors 41
 3.1.2 Geometrization of Physical Vectors 46
 3.1.3 Representations of Vectors in Given Bases 48
Elements of Vector Calculus

- 3.2.1 Scalar and Vector Fields ... 52

Elements of Exterior Differential Calculus

- 3.3.1 Equations of Space Structure 61
- 3.3.2 Applications to the Theory of Surfaces 63

Elements of Riemann Geometry

- 4.1 Standard Notions of Non-Euclidean Geometry 65
 - 4.1.1 Riemann Spaces ... 65
 - 4.1.2 Curvilinear Coordinates with Arbitrary Bases 66
 - 4.1.3 Curvilinear Coordinates with Orthogonal Bases 67
 - 4.1.4 Element of Volume ... 68
 - 4.1.5 Element of Arc Length .. 68
 - 4.1.6 Tensors .. 69
 - 4.1.7 Differential Operators in Curvilinear Coordinates 72
 - 4.1.8 Differentiation of Vectors in Curvilinear Coordinates 78
 - 4.1.9 Intrinsic Derivative .. 83
- 4.1.10 Parallel Transport .. 83

Recent Formalizations of Riemann Geometry

- 4.2 Manifolds ... 86
- 4.2.2 Covariant Differentiation 92
- 4.2.3 Curvature .. 94
- 4.2.4 Jacobi Equation .. 97

Applications of Geometric Methods in Thermodynamics

Equilibrium Thermodynamics

- 5.1 Thermodynamic Potentials .. 101
- 5.2 Open Systems. Chemical Potential 105
- 5.3 Fundamental Relations and the Euler Relationship 106
- 5.4 Thermodynamic Stability .. 108
 - 5.4.1 Mechanical Equilibrium 108
- 5.4.2 Principles of Extreme in Thermodynamics 108
- 5.5 Non-equilibrium Quantities .. 109
- 5.6 The Nature of the State of Thermodynamic Equilibrium 110
- 5.7 Other Extreme Principles. Availability Function 112
- 5.8 Another Form of the Stability Condition 112
- 5.9 Applications for Systems in Contact 113
- 5.10 Work Potentials .. 115
 - 5.10.2 Potentials of Special Work in Thermodynamics 116
 - 5.10.3 Total Work Potentials .. 117
9 Thermodynamic Curvature. Correlation. Stability 173
 9.1 Equivalent Metrics ... 174
 9.2 Properties of Riemann Curvature Tensor 177
 9.3 Normal Riemann Coordinates 178
 9.4 The Validity of the Classical Theory of Fluctuations 180
 9.5 Weinhold Geometry ... 182
 9.6 Thermodynamic Curvature 183
 9.6.1 Simple Examples .. 183
 9.6.2 Thermodynamics Curvature and Correlation Length 191
 9.6.3 Thermodynamics Curvature and Stability 194
References .. 195

Index .. 197