Signal Integrity
Samuel H. Russ

Signal Integrity

Applied Electromagnetics and Professional Practice
Contents

1. **The Basics: Charge, Energy, Time, and Distance** 1
 - Background and Objectives ... 1
 - Getting Back to Basics .. 1
 - Consequences of the Basics .. 3
 - Distance, Time, Speed, and \(c \) 4
 - The Effect of Dielectrics ... 5
 - Risetime ... 6
 - Lumped Versus Distributed .. 7
 - Knee Frequency .. 10
 - Homework .. 11

2. **Practical Matters: Circuit Boards and Debugging** 13
 - Background and Objectives ... 13
 - Components and Component Packages 13
 - Engineer’s Notebook: More About Component Packaging 14
 - What Is a Circuit Board? .. 15
 - How Are Circuit Boards Made? 17
 - How Are Circuit Boards Used to Make a Product? 19
 - Backup: How Did We Get Here? 22
 - How Are Circuit Boards Designed? 22
 - The Board Is Dead. Now What? 23
 - Homework .. 24

3. **Gates, Packaging, and Boards: Properties and Modeling** 25
 - Background and Objectives ... 25
 - What Limits What Is Possible? 25
 - Power and Heat Dissipation .. 27
 - Summarizing the Effects .. 29
 - Simplest Gate Model .. 29
Electrical Modeling .. 31
The Modeling Process 32
 Engineer’s Notebook: More About Capacitors 34
The Limits of Modeling 35
Homework .. 36

4 Circuit Elements: Resistance, Capacitance, and Inductance 37
 Background and Objectives 37
 Reviewing the Review 37
 What Is Resistance? 38
 Finding Capacitance 42
 What Is Inductance? 46
 Calculating Inductance 48
 Inductance and Return Current 49
 Inductance and the Skin Effect 50
Homework .. 52

5 Ground Bounce and Ringing 55
 Background and Objectives 55
 The Role of Inductance 55
 What Is Ground Bounce? 56
 Results of Ground Bounce 59
 Engineer’s Notebook: The Ground Bounce Pulse 59
 Engineer’s Notebook: The Self-Resetting Board 60
 Minimizing Ground Bounce 61
 What Is Ringing? .. 62
 Results of Ringing 64
 Minimizing Ringing 65
 So Where Is Ringing Seen and Not Seen Today? 65
Homework .. 66

6 Distributed Analysis: Transmission Lines, Z_0, Reflections, and Termination 69
 Background and Objectives 69
 Where Can You See a Transmission Line? 69
 Transmission Line: The View from the Inside 70
 Estimating Z_0 in Common Situations 74
 Approximate Model of a Transmission Line 75
 The Left Hand and the Right Hand: Reflection and Transmission 76
 Terminating Impedance 81
 Departures from the Ideal 83
 Fixing It When It’s Broke 86
 Engineer’s Notebook: The High-Speed Bus Disaster .. 86
Homework .. 87
7 Lossy Transmission Lines .. 91
 Background and Objectives .. 91
 What Is Attenuation and How Is It Measured? 91
 Frequency-Dependent Attenuation 93
 Dielectric Loss ... 93
 How Does Dielectric Loss Affect \(\varepsilon \)? 94
 How Does Dielectric Loss Affect Signal Propagation? 96
 Homework ... 99

8 Differential Signaling .. 101
 Background and Objectives 101
 What Is Differential Signaling and How Does It Help? 101
 What Is \(Z_{\text{diff}} \)? 103
 Obstacles: Clock Jitter and Common-Mode Signals 105
 Termination Strategies Revisited 107
 Homework ... 109

9 Crosstalk .. 111
 Background and Objectives 111
 What Is Crosstalk? ... 111
 Near-End Versus Far-End Crosstalk 113
 Estimating and Reducing Crosstalk 117
 Diagnosing Crosstalk .. 117
 Engineer’s Notebook: Crosstalk Problems 118
 Homework ... 119

10 Power Distribution Network: Frequency Domain Analysis 121
 Background and Objectives 121
 The Power Distribution Network 121
 Power Supplies and Resonance 123
 Design Strategy: The Big Picture 126
 Design Strategy: The Details 127
 Design Strategy: The Role of Simulation 130
 Selecting Bypass Capacitors 133
 Homework ... 134

11 EMI/EMC: Design and Susceptibility 137
 Background and Objectives 137
 EMI/EMC ... 137
 Circuit-Board Design .. 139
 Engineer’s Notebook: Mounting Holes, Cable Shields, and Grounding 140
 Chassis ... 143
 Cabling .. 144
 Legal Certification: Standards and Test Requirements 145
 Engineer’s Notebook: Get Down Here Right Away 146
 Homework ... 147
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Electrostatic Discharge</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Background and Objectives</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>What Is Electrostatic Discharge?</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Where Can ESD Occur?</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>ESD and Lightning Standards and Testing</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Components to Manage ESD</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Design Techniques to Manage ESD</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Homework</td>
<td>155</td>
</tr>
<tr>
<td>13</td>
<td>Clocks, Jitter, and Phased-Lock Loops</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Background and Objectives</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Clock Jitter and Clock Skew</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Clock Sources</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Origins of Clock Jitter and Layout to Reduce It</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Engineer’s Notebook: The Crystal Layout</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Homework</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Background and Objectives</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Testing a Board: The Oscilloscope</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Debugging a Board: Overview</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Transitioning to Mass Production</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Engineer’s Notebook: Confusing Connectors</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Engineer’s Notebook: Factory Fire</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Homework</td>
<td>170</td>
</tr>
<tr>
<td>15</td>
<td>Practical Matters III: Commercial and Legal Implications, Project Management, and Risk Mitigation</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Background and Objectives</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Legal Aspects of Design</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Commercial Aspects of Design</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Engineering Notebook: Predicting What Comes Next</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Project Management</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>Risk Mitigation</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Engineering Careers</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Homework</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>181</td>
</tr>
</tbody>
</table>
Introduction

Why Study This Subject?

It is my hope that this book will help the reader understand applied electromagnetics. The book will be getting into some fairly complicated and very abstract topics, but remember – the emphasis will be on the practical or “applied” aspects of the subject.

Have you ever wondered why the flight attendant tells you to turn off your cell phone at takeoff? Have you ever wondered how your hard drive talks to your computer at 3 gigabits per second over a very thin cable? How did the company that makes your computer’s processor get it to work at 3 GHz?

All of these daily examples are part of the world of signal integrity. Signal integrity is the science (and art) of designing systems that carry signals intact over distance and that do not interfere with each other. The subject lies at the intersection of electromagnetics and computer engineering, and so understanding it is vital for computer engineers in the gigahertz era.

Why This Book?

One may wonder whether a textbook like this is worth the cost. In the case of this book, it turns out there are two good reasons. First, this subject is extremely important and rarely taught in college. So this book is not only what students will use to take this class, it can also become a permanent part of a technical bookshelf and might even bail you out if you get stuck on a signal integrity issue. This book is designed specifically for that purpose – the technical bailout. Second, the book has plenty of examples and some real-world testimonials based on my own experiences.
Why Are We Here, and Where Is “Here”?

The twin revolutions of computing and communications have achieved the dream of a world with nearly instantaneous access to all corners of the globe and with a seemingly limitless body of knowledge at our fingertips. All of this was brought about through the hard work of roughly three generations of electrical and computer engineers who developed the computer chips, interconnections, and communications systems that made it all possible.

As the twin revolutions were unfolding in the 1995 time frame (right about the time the World Wide Web was launched), clock frequencies and data rates nudged up into hundreds of megahertz. (I still remember my whopping 90 MHz Pentium computer.)

At this point, a very crucial change occurred.

It turns out that there are two ways of thinking about a wire. One can use a “lumped” approximation and assume the wire is a zero ohm resistor with the same voltage at every point, or one can use a “distributed” approximation and assume the wire has inductance and can have different voltages at different points.

When the 100 MHz barrier was crossed, wires on computer motherboards stopped being wires (in the lumped sense) and started becoming transmission lines (i.e., distributed wires).

The only way to design systems today that work correctly is to use distributed analysis. This is the traditional domain of electromagnetics experts. Computer engineers literally need to know most of the methods that were used to design microwave systems back in the 1960s. This is where we are today – in a world that must be modeled using distributed analysis.

This book will teach how to convert fluently between frequency, time, and distance. This book will then teach how signals propagate, how they interfere, what can go wrong, and how to fix it. The focus in this book is on the design of real-world systems using physical principles and in cultivating an engineering intuition based on physics and measurements. Along the way, the book also looks at the design of digital systems from a manager’s perspective so you can both be a better informed engineer and become a successful manager one day (if you want to).

What makes digital design challenging? I think the challenge lies in three very common ingredients. First, digital designs are almost always cost-constrained, especially consumer items like MP3 players. Second, the increasing clock speeds (more accurately, the faster rise and fall times) make the design more complicated because everything has to work up to higher frequencies. Third, there is a considerable time-to-market pressure in the fast-changing world of computer engineering. (Did you know that Motorola lost to Intel when IBM designed the first PC because the Motorola processor was 6 months late? A 6-month slip in schedule forever changed the microprocessor landscape!) You have to get the design working and into mass production quickly, without much time to make or fix mistakes.

So, armed with this book, students and professionals can embark on successful digital designs.