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Preface

The interest in edge colorings of graphs can be traced back to 1880 when the Scottish
mathematician Peter Guthrie Tait attempted to solve the Four Color Problem with
the aid of edge colorings. Despite the fact that Tait’s approach was not successful,
it initiated a new concept. In 1964, Vadim Vizing proved that the minimum number
of colors needed to color the edges of a graph so that every two adjacent edges are
colored differently (proper edge colorings) is one of two numbers, namely either the
maximum degree or the maximum degree plus one. This result led to an increased
interest and study of edge colorings in graph theory, not only edge colorings that are
proper but also edge colorings that are not.

In recent decades, there has been great interest in edge colorings that give rise to
vertex colorings in a variety of ways, which is the subject of this book. While we
will be describing many ways in which edge colorings have induced vertex colorings
and some of the major results, problems, and conjectures that have arisen in this area
of study, it is not our goal to give a detailed survey of these subjects. Indeed, it is
our intention to provide an organized summary of several recent coloring concepts
and topics that belong to this area of study, with the hope that this may suggest new
avenues of research topics.

In Chap. 1, we begin with a brief review of the well-known concepts of proper
edge colorings and proper vertex colorings, including many fundamental results
concerning them.

In Chap. 2, unrestricted edge colorings of graphs are considered whose colors
are elements of the set N of positive integers or a set [k] = {1,2,...,k} for some
positive integer k. From such an edge coloring ¢ of a graph G, a sum-defined vertex
coloring ¢’ is defined, that is, for each vertex v of G, the color ¢’ (v) of v is the sum of
the colors of the edges incident with v. The edge coloring c is vertex-distinguishing
or irregular if the resulting vertex coloring ¢’ has the property that ¢’(«) # ¢’(v) for
every pair u, v of distinct vertices of G. The minimum positive integer k for which
a graph G has such a vertex-distinguishing edge coloring is the irregularity strength
of G. In Chap. 3, the corresponding coloring is considered in which the colors are
taken from a set Z; of integers modulo k.
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Chapter 4 also deals with unrestricted edge colorings ¢ of graphs but here the
induced vertex coloring is defined so that the color ¢’(v) of a vertex v is the set of
colors of its incident edges. In Chap. 5, the emphasis changes from vertex colorings
that are set-defined to those that are multiset-defined. In both cases, the induced
vertex colorings ¢’ are vertex-distinguishing.

In Chap. 6, unrestricted edge colorings ¢ of graphs are once again considered
but in this case the induced vertex colorings ¢’ are neighbor-distinguishing, that is,
() # ' (v) for every two adjacent vertices u and v. In this chapter, two vertex
colorings ¢ are defined, both where the colors belong to a set [k], one where ¢/(v)
is sum-defined and the other where ¢’(v) is multiset-defined. Chapter 7 is devoted
to unrestricted edge colorings of graphs whose colors are elements of Z; of integers
modulo k that induce a sum-defined, neighbor-distinguishing vertex coloring.

In Chap. 8, both proper and unrestricted edge colorings are considered, and the
vertex colorings are set-defined, using elements of [k] as colors. In Chap. 9, the edge
colorings are proper and the vertex colorings considered are sum-defined, using
elements of [k] as colors. In these two chapters, the properties of being vertex-
distinguishing and neighbor-distinguishing are both described. Chapter 9 ends with
a discussion of so-called twin edge colorings, which are proper edge colorings that
use the elements of Z; as colors and that induce proper vertex colorings that are
sum-defined.

The following table summarizes all types of edge colorings considered in this
book and the resulting vertex colorings. In particular, the table describes, in each
chapter:

. the condition placed on the edge coloring,

. the sets from which the edge colors are selected,

. the definition of the vertex colors, and

. the property required of the resulting vertex coloring.

RS S

Chapter 1: Introduction

Chapter 2: The Irregularity Strength of a Graph

Unrestricted Edge Colorings, N, Sum-defined, Vertex-Distinguishing.
Chapter 3: Modular Sum-defined, Irregular Colorings

Unrestricted Edge Colorings, Z;, Sum-defined, Vertex-Distinguishing.
Chapter 4: Set-Defined Irregular Colorings

Unrestricted Edge Colorings, N, Set-defined, Vertex-Distinguishing.
Chapter 5: Multiset-Defined Irregular Colorings

Unrestricted Edge Colorings, N, Multiset-defined, Vertex-Distinguishing.
Chapter 6: Sum-Defined Neighbor-Distinguishing Colorings
Unrestricted Edge Colorings, N, Sum-defined, Neighbor-Distinguishing.
Chapter 7: Modular Sum-Defined Neighbor-Distinguishing Colorings
Unrestricted Edge Colorings, Z;, Sum-defined, Neighbor-Distinguishing.
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Chapter 8: Strong Edge Colorings

8.1. Proper Edge Colorings, N, Set-defined, Vertex-Distinguishing.

8.2. Proper and Unrestricted Edge Colorings, N, Set-defined, Vertex-Distinguishing.
8.3. Proper Edge Colorings, N, Set-defined, Neighbor-Distinguishing.

Chapter 9: Sum-Defined Colorings by Proper Edge Colorings

9.1. Proper Edge Colorings, N, Sum-defined, Vertex-Distinguishing.

9.2. Proper Edge Colorings, N, Sum-defined, Neighbor-Distinguishing.

9.3. Proper Edge Colorings, Z;, Sum-defined, Neighbor-Distinguishing.

Kalamazoo, MI, USA Ping Zhang
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