Editorial Advisory Board

Oliver Brock, TU Berlin, Germany
Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, ISIR - UPMC & CNRS, France
Henrik Christensen, Georgia Tech, USA
Peter Corke, Queensland Univ. Technology, Australia
Paolo Dario, Scuola S. Anna Pisa, Italy
Rüdiger Dillmann, Univ. Karlsruhe, Germany
Ken Goldberg, UC Berkeley, USA
John Hollerbach, Univ. Utah, USA
Makoto Kaneko, Osaka Univ., Japan
Lydia Kavraki, Rice Univ., USA
Vijay Kumar, Univ. Pennsylvania, USA
Sukhan Lee, Sungkyunkwan Univ., Korea
Frank Park, Seoul National Univ., Korea
Tim Salcudean, Univ. British Columbia, Canada
Roland Siegwart, ETH Zurich, Switzerland
Gaurav Sukhatme, Univ. Southern California, USA
Sebastian Thrun, Stanford Univ., USA
Yangsheng Xu, Chinese Univ. Hong Kong, PRC
Shin’ichi Yuta, Tsukuba Univ., Japan

More information about this series at http://www.springer.com/series/5208
Algorithmic Foundations of Robotics XI

Selected Contributions of the Eleventh International Workshop on the Algorithmic Foundations of Robotics

Springer
Foreword

Robotics is undergoing a major transformation in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into human environments and is vigorously engaged in its new challenges. Interacting with, assisting, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights into the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen.

The *Springer Tracts in Advanced Robotics* (STAR) is devoted to bringing to the research community the latest advances in the robotics field on the basis of their significance and quality. Through a wide and timely dissemination of critical research developments in robotics, our objective with this series is to promote more exchanges and collaborations among the researchers in the community and contribute to further advancements in this rapidly growing field.

Since its inception in 1994, the biennial *Workshop Algorithmic Foundations of Robotics* (WAFR) has established some of the field’s most fundamental and lasting contributions. The launching of STAR, WAFR, and several other thematic symposia in robotics found an important platform for closer links and extended reach within the robotics community.

This volume is the outcome of the WAFR eleventh edition hosted by Boğaziçi University and is edited by Levent Akin, Nancy Amato, Volkan Isler, and Frank van der Stappen. The book offers a valuable collection highlighting the cutting-edge research in classical robotics problems (e.g., manipulation, motion, path, multi-robot, and kinodynamic planning), geometric and topological computation in robotics as well as novel applications such as informative path planning, active sensing, and surgical planning.
The contents of the 42 contributions represent a cross-section of the current state of research from one particular aspect: algorithms, and how they are inspired by classical disciplines, such as control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. Validation of algorithms, design concepts, or techniques is the common thread running through this focused collection.

Rich in topics and authoritative contributors, WAFR culminates with this unique reference on the current developments and new directions in the field of algorithmic foundations. A very fine addition to the series!

Naples, Italy
January 2015

Bruno Siciliano
STAR Editor
This is an exciting time for robotics. Governments across the world have recently announced major robotics programs such as the National Robotics Initiative, the DARPA Robotics Challenge in the U.S., and the European Commission’s euRobotics initiative. The demand for industrial automation is more than ever. Companies like Google and Amazon have made significant robotics investments. There is considerable start-up activity around robotics. New, more capable platforms ranging from legged robots to aerial vehicles are being developed at a rapid pace. In this environment, developing algorithms for robots (and automation systems in general) so that they can operate in complex and unstructured environments has become crucial. These algorithms have applications beyond physical robotic and sensing systems as they are used for scientific inquiry in other disciplines such as biology and neurosciences.

The Workshop on Algorithmic Foundations of Robotics (WAFR) is the premier venue which showcases cutting-edge research in algorithmic robotics. The eleventh WAFR, which was held at Boğaziçi University in Istanbul, Turkey continued this tradition. We received 83 very strong submissions. Each submission was assigned to three members of the Program Committee (PC) which was composed of the leading researchers in the field. Each PC member provided a review. After a discussion phase open to the entire PC, and the collection of additional reviews as needed, 42 papers were selected for presentation at the workshop. WAFR took place during August 3–5, 2014.

This volume of Springer Tracts in Advanced Robotics contains extended versions of these papers. These contributions highlight the cutting-edge research in classical robotics problems (e.g., manipulation, motion, path, multi-robot, and kinodynamic planning), geometric and topological computation in robotics as well as novel applications such as informative path planning, active sensing, and surgical planning. About half of the accepted papers have been forwarded for further review for dedicated special issues of the International Journal of Robotics Research and IEEE Transactions on Automation Science and Engineering.

In addition to paper presentations, WAFR 2014 featured three invited speakers: Vijay Kumar gave a seminar on “Aerial Robot Swarms.” Çağatay Başdoğan’s topic
was “Haptic Role Exchange and Negotiations for Human Robot Interaction.” Oussama Khatib focused on “Working with the New Robots.”

We owe many thanks to all the authors for submitting such high quality work, all the PC members and auxiliary reviewers for all of their hard work, and all WAFR participants for making WAFR 2014 a success. We would like to express our gratitude to Boğaziçi University’s Faculty of Engineering for the venue with breathtaking views, and University of Minnesota’s Department of Computer Science and Engineering for their support. Finally, we gratefully acknowledge travel support by the United States National Science Foundation for student participants.

H. Levent Akin
Nancy M. Amato
Volkan Isler
A. Frank van der Stappen
Program Committee

Levent Akin, Bogazici University
Ron Alterovitz, University of North Carolina at Chapel Hill
Nancy Amato, Texas A&M University
Aaron Ames, Texas A&M University
Devin Balkcom, Dartmouth college
Kostas Bekris, Rutgers University
Oliver Brock, TU Berlin
Howie Choset, CMU
Juan Cortés, LAAS, CNRS; Université de Toulouse
Efi Fogel, Tel Aviv University
Emilio Frazzoli, Massachusetts Institute of Technology
Ken Goldberg, UC Berkeley
Stephen Guy, University of Minnesota
David Hsu, National University of Singapore
Seth Hutchinson, University of Illinois
Volkan Isler, University of Minnesota
Leslie Kaelbling, Massachusetts Institute of Technology
Sertac Karaman, Massachusetts Institute of Technology
Sven Koenig, University of Southern California
Vijay Kumar, University of Pennsylvania
Hanna Kurniawati, University of Queensland
Jyh-Ming Lien, George Mason University
Maxim Likhachev, Carnegie Mellon University
Ming Lin, UNC Chapel Hill
Sonia Martinez, UC San Diego
Marco Antonio Morales Aguirre, ITAM
Jason O’Kane, University of South Carolina
Songhwai Oh, Seoul National University
Elon Rimon, Technion
Sam Rodriguez, Texas A&M University
Nicholas Roy, Massachusetts Institute of Technology
Thierry Simeon, LAAS
Stephen Smith, University of Waterloo
Dezhen Song, Texas A&M University
Subhash Suri, University of California, Santa Barbara
Lydia Tapia, University of New Mexico
Jeff Trinkle, Rensselaer Polytechnic Institute
Frank van der Stappen, Utrecht University
Chee Yap, New York University
Additional Reviewers

Allen, Thomas
Amato, Nancy
Arslan, Oktay

Berenson, Dmitry
Best, Andrew
Boardman, Beth
Borum, Andy

Cappo, Ellen
Chaumette, Francois
Chitsaz, Hamidreza
Cohen, Benjamin
Cortes, Andres

Davoodi, Mansoor
De, Avik
Dear, Tony
Devaurs, Didier
Dobson, Andrew
Dogar, Mehmet R.
Dong, Jun

Gochev, Kalin
Godoy, Julio
Guerrero, Jose

Hauser, Kris
Hielsberg, Matthew
Hollinger, Geoffrey
Hollis, Brayden
Imeson, Frank
Jaklin, Norman
Kim, Soonkyum
Kimmel, Andrew
Knepper, Ross
Krontiris, Athanasios
Kumar, T.K. Satish
Kunz, Tobias
Kupcsik, Andras
Lee, Joseph
Li, Shuai
Li, Wen
Li, Yanbo
Lozano-Perez, Tomas
Lu, Yan
Macallister, Brian
Manor, Gil
Mansard, Nicolas
McMahon, Troy
Moll, Mark
Mount, David
Narain, Rahul
Narayanan, Venkatraman
Noori, Narges
Otte, Michael
Pan, Jia
Park, Chonhyon
Patil, Sachin
Perrin, Nicolas
Phillips, Mike
Plaku, Erion
Plonski, Patrick
Rangaprasad, Arun Srivatsan
Rodriguez, Sam
Rote, Günter
Ruml, Wheeler
Salzman, Oren
Sanan, Sid
Shome, Rahul
Singh, Surya
Sinnet, Ryan
Solovey, Kiril
Srinivasa, Siddhartha
Sun, Wen

Tedrake, Russ
Tesch, Matthew
Thiagarajan, P.S.
Tokekar, Pratap
Vo, Chris
Wagner, Glenn
Wilkie, David
Yershov, Dmitry
Zhang, Yunong
Zheng, Yu
Contents

Efficient Multi-robot Motion Planning for Unlabeled Discs in Simple Polygons ... 1
Aviv Adler, Mark de Berg, Dan Halperin and Kiril Solovey

Navigation of Distinct Euclidean Particles via Hierarchical Clustering .. 19
Omur Arslan, Dan P. Guralnik and Daniel E. Koditschek

Coalition Formation Games for Dynamic Multirobot Tasks 37
Haluk Bayram and H. İlşıl Bozma

Active Control Strategies for Discovering and Localizing Devices with Range-Only Sensors 55
Benjamin Charrow, Nathan Michael and Vijay Kumar

Aggressive Moving Obstacle Avoidance Using a Stochastic Reachable Set Based Potential Field 73
Hao-Tien Chiang, Nick Malone, Kendra Lesser, Meeko Oishi and Lydia Tapia

Distributed Range-Based Relative Localization of Robot Swarms 91
Alejandro Cornejo and Radhika Nagpal

Computing Large Convex Regions of Obstacle-Free Space Through Semidefinite Programming 109
Robin Deits and Russ Tedrake

A Region-Based Strategy for Collaborative Roadmap Construction ... 125
Jory Denny, Read Sandström, Nicole Julian and Nancy M. Amato
Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces .. 143
Didier Devaurs, Thierry Siméon and Juan Cortés

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions 161
Sarah Ferguson, Brandon Luders, Robert C. Grande and Jonathan P. How

FFRob: An Efficient Heuristic for Task and Motion Planning 179
Caelan Reed Garrett, Tomás Lozano-Pérez and Leslie Pack Kaelbling

Fast Nearest Neighbor Search in SE(3) for Sampling-Based Motion Planning .. 197
Jeffrey Ichnowski and Ron Alterovitz

Trackability with Imprecise Localization 215
Kyle Klein and Subhash Suri

Kinodynamic RRTs with Fixed Time Step and Best-Input Extension Are Not Probabilistically Complete 233
Tobias Kunz and Mike Stilman

Featureless Motion Vector-Based Simultaneous Localization, Planar Surface Extraction, and Moving Obstacle Tracking 245
Wen Li and Dezhen Song

Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning .. 263
Yanbo Li, Zakary Littlefield and Kostas E. Bekris

Adaptive Informative Path Planning in Metric Spaces 283
Zhan Wei Lim, David Hsu and Wee Sun Lee

The Feasible Transition Graph: Encoding Topology and Manipulation Constraints for Multirobot Push-Planning 301
Laura Lindzey, Ross A. Knepper, Howie Choset and Siddhartha S. Srinivasa

Collision Prediction Among Rigid and Articulated Obstacles with Unknown Motion ... 319
Yanyan Lu, Zhonghua Xi and Jyh-Ming Lien
Asymptotically Optimal Stochastic Motion Planning with Temporal Goals .. 335
Ryan Luna, Morteza Lahijanian, Mark Moll and Lydia E. Kavraki

Resolution-Exact Algorithms for Link Robots .. 353
Zhongdi Luo, Yi-Jen Chiang, Jyh-Ming Lien and Chee Yap

Optimal Trajectories for Planar Rigid Bodies with Switching Costs 371
Yu-Han Lyu and Devin Balkcom

Maximum-Reward Motion in a Stochastic Environment: The Nonequilibrium Statistical Mechanics Perspective 389
Fangchang Ma and Sertac Karaman

Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems .. 407
Neil Mathew, Stephen L. Smith and Steven L. Waslander

Composing Dynamical Systems to Realize Dynamic Robotic Dancing ... 425
Shishir Kolathaya, Wen-Loong Ma and Aaron D. Ames

The Lion and Man Game on Convex Terrains .. 443
Narges Noori and Volkan Isler

RRTX: Real-Time Motion Planning/Replanning for Environments with Unpredictable Obstacles 461
Michael Otte and Emilio Frazzoli

Orienting Parts with Shape Variation .. 479
Fatemeh Panahi, Mansoor Davoodi and A. Frank van der Stappen

Smooth and Dynamically Stable Navigation of Multiple Human-Like Robots .. 497
Chonhyon Park and Dinesh Manocha

Scaling up Gaussian Belief Space Planning Through Covariance-Free Trajectory Optimization and Automatic Differentiation .. 515
Sachin Patil, Gregory Kahn, Michael Laskey, John Schulman, Ken Goldberg and Pieter Abbeel
Planning Curvature and Torsion Constrained Ribbons in 3D with Application to Intracavitary Brachytherapy .. 535
Sachin Patil, Jia Pan, Pieter Abbeel and Ken Goldberg

A Quadratic Programming Approach to Quasi-Static Whole-Body Manipulation ... 553
Krishna Shankar, Joel W. Burdick and Nicolas H. Hudson

On-line Coverage of Planar Environments by a Battery Powered Autonomous Mobile Robot .. 571
Iddo Shnaps and Elon Rimon

Finding a Needle in an Exponential Haystack: Discrete RRT for Exploration of Implicit Roadmaps in Multi-robot Motion Planning .. 591
Kiril Solovey, Oren Salzman and Dan Halperin

Stochastic Extended LQR: Optimization-Based Motion Planning Under Uncertainty ... 609
Wen Sun, Jur van den Berg and Ron Alterovitz

An Approximation Algorithm for Time Optimal Multi-Robot Routing ... 627
Matthew Turpin, Nathan Michael and Vijay Kumar

Decidability of Robot Manipulation Planning: Three Disks in the Plane .. 641
Marilena Vendittelli, Jean-Paul Laumond and Bud Mishra

A Topological Perspective on Cycling Robots for Full Tree Coverage .. 659
Han Wang, Cheng Chen and Yuliy Baryshnikov

Towards Arranging and Tightening Knots and Unknots with Fixtures .. 677
Weifu Wang, Matthew P. Bell and Devin Balkcom

Asymptotically Optimal Feedback Planning: FMM Meets Adaptive Mesh Refinement .. 695
Dmitry S. Yershov and Emilio Frazzoli

Online Task Planning and Control for Aerial Robots with Fuel Constraints in Winds .. 711
Chanyeol Yoo, Robert Fitch and Salah Sukkarieh
Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests and Planning Algorithms. 729
Jingjin Yu and Daniela Rus

Author Index .. 747

Subject Index .. 749