Advances in Intelligent Systems and Computing

Volume 351

Series editor
Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl
About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily textbooks and proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman
Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members
Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156
Roman Szewczyk · Cezary Zieliński
Małgorzata Kaliczyńska
Editors

Progress in Automation, Robotics and Measuring Techniques

Volume 2 Robotics
Control, automation, robotics and measuring techniques have been paramount to the development of industry in the last few decades. As currently the process of reindustrialization of European Union has gained importance, so have the mentioned disciplines. For this reason, both theoretical and application oriented developments in automation, robotics and measuring techniques are at the focus of interest of the scientific and engineering community.

It should be underscored that automation, robotics and measuring techniques have a significant innovative potential. In the case of automation and control, currently this potential is mainly connected with discrete systems, emergence of new actuators and sensors, new diagnostic methods, as well as modern design approaches exemplified by fuzzy logic, evolutionary computation, neural networks, probabilistic methods etc.

Development of field and service robots is still the most important part of theoretical and application development in widely perceived robotics. Crucial problems and challenges are associated with control of mechatronic systems in general, perception, navigation, manipulation and grasping, locomotion and reasoning.

Elements of measuring systems are recently developed on the base of such modern and advanced materials as graphene. Moreover, increase in computational power of modern computers fosters new approaches to advanced signal processing and experimental verification of sophisticated problems of the theory of metrology.

This book presents the recent progress in control, automation, robotics, and measuring techniques that are jointly trying to meet those challenges and to fulfil technological, economic and social needs of European Union. It presents the contributions of experts in those fields. Their work is concerned both with theory and industrial practice. Individual chapters present the theoretical analysis of specific technical problems, often supplemented by numerical analysis and simulation and real experiments on prototypes. The implementation of the research results in industrial practice is also reported.
We hope that the presented progress in theoretical analysis and practical solutions will be useful to both the researchers working in the area of engineering sciences and to practitioners solving industrial problems.

Warsaw, January 2015

Roman Szewczyk
Cezary Zieliński
Małgorzata Kaliczyńska
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming of Operational Characteristics of an Orthotic Robot by</td>
<td>1</td>
</tr>
<tr>
<td>Influencing Parameters of Its Drive Systems</td>
<td></td>
</tr>
<tr>
<td>Karol Bagiński, Jakub Wierciak</td>
<td></td>
</tr>
<tr>
<td>Lightweight RGB-D SLAM System for Search and Rescue Robots</td>
<td>11</td>
</tr>
<tr>
<td>Dominik Belter, Michał Nowicki, Piotr Skrzypczyński, Krzysztof Walas,</td>
<td></td>
</tr>
<tr>
<td>Jan Wietrzykowski</td>
<td></td>
</tr>
<tr>
<td>Affordable Multi-legged Robots for Research and STEM Education:</td>
<td>23</td>
</tr>
<tr>
<td>A Case Study of Design and Technological Aspects</td>
<td></td>
</tr>
<tr>
<td>Dominik Belter, Piotr Skrzypczyński, Krzysztof Walas, Donald Wlodkow</td>
<td></td>
</tr>
<tr>
<td>Falcon: A Compact Multirotor Flying Platform with High Load Capability</td>
<td>35</td>
</tr>
<tr>
<td>Adam Bondyra, Stanisław Gardecki, Przemysław Gąsior, Andrzej Kasiński</td>
<td></td>
</tr>
<tr>
<td>TAPAS: A Robotic Platform for Autonomous Navigation in Outdoor</td>
<td>45</td>
</tr>
<tr>
<td>Environments</td>
<td></td>
</tr>
<tr>
<td>Adam Bondyra, Michał Nowicki, Jan Wietrzykowski</td>
<td></td>
</tr>
<tr>
<td>NAO-mark vs QR-code Recognition by NAO Robot Vision</td>
<td>55</td>
</tr>
<tr>
<td>Jan Figat, Włodzimierz Kasprzak</td>
<td></td>
</tr>
<tr>
<td>Hive Collective Intelligence for Cloud Robotics: A Hybrid Distributed</td>
<td>65</td>
</tr>
<tr>
<td>Robotic Controller Design for Learning and Adaptation</td>
<td></td>
</tr>
<tr>
<td>Alexandros Gkiokas, Emmanouil G. Tsardoulias, Pericles A. Mitkas</td>
<td></td>
</tr>
<tr>
<td>The Autonomous Return Control System for Mobile Platform, Used in</td>
<td>79</td>
</tr>
<tr>
<td>CBRN Hazards</td>
<td></td>
</tr>
<tr>
<td>Robert Głębocki, Antoni Kopyt</td>
<td></td>
</tr>
<tr>
<td>Navigation Module for Mobile Robot</td>
<td>87</td>
</tr>
<tr>
<td>Robert Głębocki, Antoni Kopyt, Paweł Kicman</td>
<td></td>
</tr>
</tbody>
</table>
An Efficient PSO-Based Method for an Identification of a Quadrotor Model Parameters .. 95
Jarosław Gośliński, Stanisław Gardecki, Wojciech Giernacki

User Needs and Requirements for the Mobility Assistance and Activity Monitoring Scenario within the RAPP Project 105
Miren Iturburu, Eneko Goiburu, Javier Yanguas, Edurne Andueza, Elia Corral, Cristina Alderete, Ana Orbegozo, David Daney, Vincent Prunet, Jean-Pierre Merlet

Safety Module Based on Gyroscopie in the System for Verticalization and Aiding Motion of the Disabled 119
Danuta Jasińska-Choromańska, Marcin Matyjewicz-Maciejewicz

Gait Trajectory Planing for CIE Exoskeleton 129
Rafał Kabaciński, Piotr Kaczmarek, Mateusz Kowalski

Specification of Abstract Robot Skills in Terms of Control System Behaviours ... 139
Tomasz Kornuta, Tomasz Winiarski, Cezary Zieliński

Construction and Signal Filtering in Quadrotor 153
Arkadiusz Kubacki, Piotr Owczarek, Adam Owczarkowski, Arkadiusz Jakubowski

Adaptive Optical Inspection System with Use of Reconfigurable Manipulator ... 163
Jordan Mężyk, Piotr Garbacz, Wojciech Mizak

Assistive Robots as Future Caregivers: The RAPP Approach 171
Pericles A. Mitkas

Simulation-Based Evaluation of Robot-Assisted Wireless Sensors Positioning ... 181
Ewa Niewiadomska-Szynkiewicz, Andrzej Sikora

Small Remotely Operated Screw-Propelled Vehicle 191
Dymitr Osiński, Ksawery Szykiedans

HMI with Vision System to Control Manipulator by Operator Hand Movement ... 201
Piotr Owczarek, Dominik Rybarczyk, Dariusz Sędziak, Michal Kašpárek

A Comparison of Control Strategies for 4DoF Model of Unmanned Bicycle Robot Stabilised by Inertial Wheel 211
Adam Owczarkowski, Dariusz Horla
Contents

Integration of Qualitative and Quantitative Spatial Data within a Semantic Map for Service Robots .. 223
Maciej Przybylski, Daniel Koguciuk, Barbara Siemiątkowska, Bogdan Harasymowicz-Boggio, Łukasz Chechliński

Social Inclusion with Robots: A RAPP Case Study Using NAO for Technology Illiterate Elderly at Ormylia Foundation 233
Sofia Reppou, George Karagiannis

On the Application of QR Codes for Robust Self-localization of Mobile Robots in Various Application Scenarios 243
Marta Rostkowska, Michał Topolski

Reconfigurable Agent Architecture for Robots Utilising Cloud Computing .. 253
Marcin Szlenk, Cezary Zieliński, Maksym Figat, Tomasz Kornuta

Kinematic Interactions Between Orthotic Robot and a Human 265
Ksawery Szykiedans

CIE-Hand towards Prosthetic Limb .. 275
Jakub Tomczyński, Tomasz Mańkowski, Krzysztof Walas, Piotr Kaczmarek

Merging Robotics and AAL Ontologies: The RAPP Methodology 285
Emmanouil G. Tsardoulias, Cezary Zieliński, Włodzimierz Kasprzak, Sofia Reppou, Andreas L. Symeonidis, Pericles A. Mitkas, George Karagiannis

In-Motion Balance Recovery of a Humanoid Robot under Severe External Disturbances ... 299
Mikołaj Wasielica

Exploring OpenStreetMap Publicly Available Information for Autonomous Robot Navigation ... 309
Jan Wietrzykowski, Michał Nowicki, Adam Bondyra

Two Mode Impedance Control of Velma Service Robot Redundant Arm ... 319
Tomasz Winiarski, Konrad Banachowicz, Dawid Seredyński

The Social Construction of Creativity in Educational Robotics 329
Karolina Zawieska, Brian R. Duffy

Author Index .. 339
About the Editors

Professor Roman Szewczyk received both his PhD and DSc in the field of mechatronics. He is specializing in the modelling of properties of magnetic materials as well as in sensors and sensor interfacing, in particular magnetic sensors for security applications. He is the leading the development of a sensing unit for a mobile robot developed for the Polish Police Central Forensic Laboratory and of methods of non-destructive testing based on the magnetoelastic effect. Professor Szewczyk was involved in over 10 European Union funded research projects within the FP6 and FP7 as well as projects financed by the European Defence Organization. Moreover, he was leading two regional and national scale technological foresight projects and was active in the organization and implementation of technological transfer between companies and research institutes. Roman Szewczyk is Secretary for Scientific Affairs in the Industrial Research Institute for Automation and Measurements (PIAP). He is also Associate Professor at the Faculty of Mechatronics, Warsaw University of Technology and a Vice-chairman of the Academy of Young Researchers of the Polish Academy of Sciences.

Professor Cezary Zielinski received his M.Sc./Eng. degree in control in 1982, Ph.D. degree in control and robotics in 1988, the D.Sc. (habilitation) degree in control and robotics in 1996, all from the Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland, and Professorship in 2012. Currently he is Professor both in the Industrial Research Institute for Automation and Measurement (PIAP) and the Warsaw University of Technology, where he is Director of the Institute of Control and Computation Engineering. Since 2007 he has been a member of the Committee for Automatic Control and Robotics, the Polish Academy of Sciences. Professor Zieliński is Head of the Robotics Group in the Institute of Control and Computation Engineering working on robot control and programming methods. His research interests focus on robotics in general and in particular include: robot programming methods, formal approach to the specification of architectures of multi-effector and multi-receptor systems, robot kinematics, robot position-force control, visual servo control, and design of digital circuits. He is the author/coauthor of over 180 conference and journal papers as well as books concerned with the above mentioned research subjects.
Dr. Małgorzata Kaliczyńska received her M.Sc. Eng. degree in cybernetics from the Faculty of Electronics, Wrocław University of Technology, and her Ph.D. degree in the field of fluid mechanics from the Faculty of Mechanical and Power Engineering in this same university. Now she is Assistant Professor in the Industrial Research Institute for Automation and Measurement (PIAP) and Editor of the scientific and technological magazine “Measurements, Automation, Robotics”. Her areas of research interest include distributed control systems, Internet of Things, information retrieval and webometrics.