More information about this series at http://www.springer.com/series/1244
Preface

This volume contains the papers presented at DARE 2014: The Second International Workshop on Data Analytics for Renewable Energy Integration, which was held in Nancy, France in September 2014 and hosted by ECML/PKDD (the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases) 2014.

Concerns about climate change, energy security, and dwindling fossil fuel reserves are stimulating ever-increasing interest in the generation, distribution, and management of renewable energy. While a lot of attention has been devoted to generation technologies, an equally important challenge is the integration of energy extracted from renewable resources into existing electricity distribution and transmission systems. Renewable energy resources like wind and solar energy are often spatially distributed and inherently variable, necessitating the use of computing techniques to predict levels of supply and demand, coordinate electricity distribution, and manage the operations of energy storage facilities.

A key element of the solution to this problem is the concept of a “smart grid.” There is no standard definition but a smart grid is broadly perceived as an evolved form of the traditional electricity grid where advanced techniques, such as information and communications technology (ICT), are used extensively to detect, predict, and intelligently respond to events that may affect the supply of electricity.

Data analytics is a science that encompasses data mining, machine learning, and statistical methods, and which focuses on cleaning, transforming, modeling, and extracting actionable information from large, complex datasets. A smart grid generates a large amount of data from its various components, examples of which include renewable energy generators and smart meters; the potential value of this data is huge but exploiting this value will be almost impossible without the use of proper analytics. With the application of systematic analytics on the smart grid’s data, its goal of better economy, efficiency, reliability, and security can be achieved. In other words, data analytics is an essential tool that can help to imbue the smart grid with “smartness.”

In this context, the focus of DARE 2014 is to study and present the use of various data analytics techniques in the different areas of renewable energy integration. While the workshop was held on a relatively small scale it still attracted contributions that spanned a variety of relevant topical areas such as the detection of faults and other events in smart grids, forecasting of energy generation in photovoltaic and wind farms, automated analysis of rooftop PV capacity, and flexibility analysis in energy consumption. This volume will be very useful to researchers, practitioners, and other stakeholders who are seeking to leverage and drive the uptake of renewable energy and smart grid systems.
We are very grateful to the organizers of ECML/PKDD 2014 for hosting DARE 2014, the Program Committee members for their time and assistance, and to Masdar Institute of Science and Technology and MIT for their support to this timely and important workshop. Finally, we would also like to thank the authors for their valuable contributions to DARE 2014.

September 2014
Wei Lee Woon
Zeyar Aung
Stuart Madnick
Organization

Program Chairs

Wei Lee Woon
Masdar Institute of Science and Technology, UAE
Zeyar Aung
Masdar Institute of Science and Technology, UAE
Stuart Madnick
Massachusetts Institute of Technology, USA

Program Committee

Osman Ahmed
Siemens Building Technologies, USA
Amer Al Hinai
Sultan Qaboos University, Oman
Alvaro A. Cardenas
University of Texas at Dallas, USA
Dan Cornford
Aston University, UK
Mengling Feng
Massachusetts Institute of Technology, USA
Oliver Kramer
University of Oldenburg, Germany
Wolfgang Lehner
Technische Universität Dresden, Germany
Panos Liatsis
City University London, UK
Jeremy Lin
PJM Interconnection LLC, USA
David Lowe
Aston University, UK
Francisco Martínez-Álvarez
Pablo de Olavide University of Seville, Spain
Bruce McMillin
Missouri University of Science and Technology, USA
See-Kiong Ng
Institute for Infocomm Research, Singapore
Pierre Pinson
Technical University of Denmark, Denmark
Iyad Rahwan
Masdar Institute of Science and Technology, UAE
Kamran Shafi
University of New South Wales, Australia
Kelvin Sim
Institute for Infocomm Research, Singapore
Bogdan Trawinski
Wrocław University of Technology, Poland
Alberto Troccoli
CSIRO, Australia
Wilfred Walsh
National University of Singapore, Singapore
Paul Yoo
Khalifa University of Science, Technology and Research, UAE
Hatem Zeineldin
Masdar Institute of Science and Technology, UAE
Towards Flexibility Detection in Device-Level Energy Consumption
Bijay Neupane, Torben Bach Pedersen, and Bo Thiesson

Balancing Energy Flexibilities Through Aggregation
Emmanouil Valsomatzis, Katja Hose, and Torben Bach Pedersen

Machine Learning Prediction of Large Area Photovoltaic Energy Production
Ángela Fernández, Yvonne Gala, and José R. Dorronsoro

The Research on Vulnerability Analysis in OpenADR for Smart Grid
Mijeong Park, Miyoung Kang, and Jin-Young Choi

Improving an Accuracy of ANN-Based Mesoscale-Microscale Coupling Model by Data Categorization: With Application to Wind Forecast for Offshore and Complex Terrain Onshore Wind Farms
Alla Sapronova, Catherine Meissner, and Matteo Mana

PowerScope: Early Event Detection and Identification in Electric Power Systems
Yang Weng, Christos Faloutos, and Marija Ilic

Kasun S. Perera, Zeyar Aung, and Wei Lee Woon

A Framework for Data Mining in Wind Power Time Series
Oliver Kramer, Fabian Gieseke, Justin Heinermann, Jendrik Poloczek, and Nils André Treiber

Systematical Evaluation of Solar Energy Supply Forecasts
Robert Ulbricht, Martin Hahmann, Hilko Donker, and Wolfgang Lehner

Forecasting and Visualization of Renewable Energy Technologies Using Keyword Taxonomies
Wei Lee Woon, Zeyar Aung, and Stuart Madnick

Rooftop Detection for Planning of Solar PV Deployment: A Case Study in Abu Dhabi
Bikash Joshi, Baluyan Hayk, Amer Al-Hinai, and Wei Lee Woon

Author Index

151