Econophysics and Data Driven Modelling of Market Dynamics
New Economic Windows

Series editors

Marisa Faggini, Mauro Gallegati, Alan P. Kirman, Thomas Lux

Series Editorial Board

Jaime Gil Aluja
Departament d’Economia i Organització d’Empreses, Universitat de Barcelona, Barcelona, Spain
Fortunato Arecchi
Dipartimento di Fisica, Università degli Studi di Firenze and INOA, Florence, Italy
David Colander
Department of Economics, Middlebury College, Middlebury, VT, USA
Richard H. Day
Department of Economics, University of Southern California, Los Angeles, USA
Steve Keen
School of Economics and Finance, University of Western Sydney, Penrith, Australia
Marji Lines
Dipartimento di Scienze Statistiche, Università degli Studi di Udine, Udine, Italy
Alfredo Medio
Dipartimento di Scienze Statistiche, Università degli Studi di Udine, Udine, Italy
Paul Ormerod
Directors of Environment Business-Volterra Consulting, London, UK
Peter Richmond
School of Physics, Trinity College, Dublin 2, Ireland
J. Barkley Rosser
Department of Economics, James Madison University, Harrisonburg, VA, USA
Sorin Solomon Racah
Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
Pietro Terna
Dipartimento di Scienze Economiche e Finanziarie, Università degli Studi di Torino, Torino, Italy
Kumaraswamy (Vela) Velupillai
Department of Economics, National University of Ireland, Galway, Ireland
Nicolas Vriend
Department of Economics, Queen Mary University of London, London, UK
Lotti Zadeh
Computer Science Division, University of California Berkeley, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/6901
Econophysics and Data Driven Modelling of Market Dynamics
Preface

This proceedings volume is based on the conference entitled ‘Econophysics and Data Driven Modelling of Market Dynamics’ that was held at Saha Institute of Nuclear Physics, Kolkata during 14–17 March 2014. This was the eighth event of the ‘Econophys-Kolkata’ series of conferences, and was organized jointly by Saha Institute of Nuclear Physics, École Centrale Paris, Jawaharlal Nehru University and Kyoto University.

During the past decades, the financial market landscape has been dramatically changing: deregulation of markets, growing complexity of products, etc. The ever-rising speed and decreasing costs of computational power and networks have led to the emergence of huge databases. We chose this particular theme for the conference, as we thought that it would be most appropriate with the availability of these data. Econophysicists, along with many others, have been relying primarily on empirical observations in order to construct models and validate them, or study models that are better empirically founded. Thus, a major part of the efforts of econophysicists have been the study of empirical data and financial time series analyses. Often, the empirics have guided researchers to design more realistic and practical models. The recent turmoil on financial markets and the 2008 crash seem to plead for new models or approaches, and the econophysics community indeed has an important role to play in market modelling in the future years to come.

This proceedings volume contains papers by distinguished experts from all over the world, mostly based on the talks and seminars delivered at the meeting and accepted after refereeing. For completeness, a few articles by experts who could not participate in the meeting due to unavoidable reasons were also invited and these too have been incorporated in this volume. This volume is organized as follows: A first part dedicated to ‘Market Analysis and Modelling’. A second part entitled ‘Miscellaneous’ presents other ongoing studies in related areas on econophysics and sociophysics. We have included in the third part, ‘Reviews’, two reviews which address recent developments in econophysics and sociophysics. We have included in the fourth part, ‘Discussions and Commentary’, an extensive note on the impact of econophysics researches (obtained from responses of leading researchers to
questionnaire). Another write-up in this part discusses the influence of econophysics research on contemporary researches in social sciences.

We are grateful to all the participants at the meeting and for their contributions. We are also grateful to Mauro Gallegati and the Editorial Board of the ‘New Economic Windows’ series of Springer-Verlag (Italy) for their continuing support in getting this proceedings volume published in their esteemed series.

The conveners (editors) also express their thanks to Saha Institute of Nuclear Physics, École Centrale Paris, Jawaharlal Nehru University and Kyoto University for their support in organizing this conference. The support from J.C. Bose project fund (DST, India) of Bikas K. Chakrabarti is gratefully acknowledged.

Châtenay-Malabry, France
Kyoto, Japan
Kolkata, India
New Delhi, India
Kolkata, India
October 2014

Frédéric Abergel
Hideaki Aoyama
Bikas K. Chakrabarti
Anirban Chakraborti
Asim Ghosh
Contents

Part I Market Analysis and Modelling

Empirical Evidence of Market Inefficiency:
Predicting Single-Stock Returns .. 3
Marouane Anane and Frédéric Abergel
1 Introduction ... 3
2 Data, Methodology and Performance Measures 4
 2.1 Data ... 4
 2.2 Methodology ... 5
 2.3 Performance Measures .. 6
3 Conditional Probability Matrices ... 6
 3.1 Binary Method ... 8
 3.2 Four-Class Method ... 11
4 Linear Regression .. 12
 4.1 Ordinary Least Squares (OLS) 14
 4.2 Ridge Regression .. 15
 4.3 Least Absolute Shrinkage and Selection
 Operator (LASSO) ... 20
 4.4 Elastic Net (EN) .. 22
5 Conclusions ... 24
References ... 66

Calibration of a Stock’s Beta Using Option Prices 67
Sofiene El Aoud and Frédéric Abergel
1 Introduction ... 67
2 Model with Constant Idiosyncratic Volatility 69
 2.1 Presentation of the Model 69
 2.2 Calibration of Implied Beta 70
 2.3 Limits of the Model ... 71
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Model with Stochastic Idiosyncratic Volatility</td>
<td>71</td>
</tr>
<tr>
<td>3.1</td>
<td>Presentation of the Model</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Pricing Options on the Index and the Stock</td>
<td>73</td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration of Implied Beta Using Options Prices</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Applications for the Estimation of the Parameter β</td>
<td>83</td>
</tr>
<tr>
<td>4.1</td>
<td>Prediction of Forward Beta</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Hedging of Options on the Stock by Instruments on the Index</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>94</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>103</td>
</tr>
</tbody>
</table>

Long-Term Evolution of the Topological Structure of Interactions Among Stocks in the New York Stock Exchange 1925–2012

Chandrashekar Kuyyamudi, Anindya S. Chakrabarti and Sitabhra Sinha

1 Introduction | 106 |
2 The NYSE | 107 |
3 Results | 109 |
3.1	Return Cross-Correlation Matrix	109
3.2	Eigenvalue Analysis of the Correlation Matrix	110
3.3	The Largest Eigenvalue	111
3.4	Filtering the Correlation Matrix	112
3.5	Time Evolution of the Market Mode	113
3.6	Time Evolution of the Random Modes	114
3.7	Time Evolution of the Intra-group Interaction Modes	115
3.8	Percolation Inspired Approach to Clustering	117
References		120

Bitcoin Dynamics: The Inverse Square Law of Price Fluctuations and Other Stylized Facts

Soumya Easwaran, Manu Dixit and Sitabhra Sinha

1 Introduction | 121 |
2 The Bitcoin | 122 |
3 Results | 123 |
4 Discussion | 127 |
References | 127 |

Are Firms that Are Awarded More Patents More Productive?

Shouji Fujimoto, Atushi Ishikawa, Takayuki Mizuno and Tsutomu Watanabe

1 Introduction | 129 |
2 Databases | 130 |
3 Distribution of Firm Patents | 131 |
Nonlinear Dynamics of Stock Markets During Critical Periods .. 143
Kousik Guhathakurta
1 Introduction .. 143
2 The Stock Market Crashes Under Study .. 145
 2.1 Black Monday (Oct 19, 1987) Crash ... 145
 2.2 Japanese Bubble (1986–1991) .. 146
 2.3 The Friday the 13th Mini-crash (Oct 13, 1989) ... 146
 2.4 October 27, 1997 Mini-crash ... 146
 2.5 11 Sept NYSE, 2001 Crash .. 146
 2.6 Stock Market Downturn of 2002, DJIA ... 147
 2.7 2010 Flash Crash ... 147
 2.8 China 2007 Crash ... 147
3 Data & Software ... 148
4 Theoretical Background of Empirical Tools .. 149
 4.1 Recurrence Plot .. 149
 4.2 Quantification of Recurrence Plots (Recurrence Quantification Analysis) With Confidence Intervals .. 150
5 Analysis of Empirical Results .. 152
6 Conclusions ... 163
References .. 164

Probabilistic Flows of Inhabitants in Urban Areas and Self-organization in Housing Markets .. 167
Takao Hishikawa and Jun-ichi Inoue
1 Introduction .. 167
2 The Model System ... 170
 2.1 A City—Working Space— ... 170
 2.2 Agents .. 171
 2.3 Attractiveness of Locations .. 172
 2.4 Probabilistic Search of Locations by Buyers ... 174
 2.5 Offering Prices by Sellers ... 175
 2.6 The Condition on Which the Transaction is Approved ... 176
 2.7 Computer Simulations: A Preliminary ... 176
3 Empirical Data in City of Sapporo ... 178
4 An Extension to a City Having Multiple Centers ... 179
5 Computer Simulations ... 180
5.1 Spatial Structure in the Distribution of Visiting Times ... 180
5.2 The Rent Distribution .. 182
5.3 On the Locations of Offices ... 183
5.4 On the Effective Time-Scale of Update Rule ... 185
6 Summary and Discussion ... 185
6.1 The ‘Quasi-One-dimensional’ Model. ... 186
6.2 Probabilistic Search Depending on the Location of Office ... 186
References .. 188

Part II Miscellaneous

Performance of Inequality Indices ... 191
Anurag Chaplot and Rituparna Sen
1 Introduction .. 191
2 Different Measures of Inequality ... 192
3 Estimation of Inequality Indices ... 193
 3.1 Point Estimates ... 194
 3.2 Normal Approximation Confidence Intervals ... 195
 3.3 Bootstrap Percentile Confidence Interval ... 196
 3.4 Bootstrap-t Confidence Interval ... 196
4 Simulation Study .. 196
5 Real Data Examples ... 204
6 Conclusions .. 209
References .. 211

A Dynamical View of Different Solution Paradigms in Two-Person Symmetric Games: Nash Versus Co-action Equilibria ... 213
V. Sasidevan and Sitabhra Sinha
1 Introduction .. 213
2 A Dynamical Framework for Analysing 2-Person Games .. 215
3 Examples ... 218
 3.1 Prisoner’s Dilemma ... 218
 3.2 Chicken .. 219
 3.3 Stag-Hunt .. 222
4 Conclusions .. 223
References .. 223
Spatio-Temporal Patterns of Development in India: Identifying Geographical Features of Growth and Urbanisation

S. Sridhar, Tara Thiagarajan and Sitabhra Sinha

Part III Reviews

Physicists’ Approaches to a Few Economic Problems

Anirban Chakraborti, Yoshi Fujiwara, Asim Ghosh, Jun-ichi Inoue and Sitabhra Sinha

Contents xi
6 Financial Time-Series Analyses: Wiener Processes
and Beyond .. 271
6.1 Introduction 271
6.2 Empirical Evidence and Stable Distributions 271
6.3 Time-Dependent Volatility and the Prediction Models 273
6.4 Duration Between Price Changes: First-Passage Process 274
6.5 Microscopic Reconstruction of Prices 276
6.6 Summary 279
7 Outlook 279
References 280

Socio-Economic Inequalities: A Statistical Physics Perspective 287
Arnab Chatterjee
1 Introduction 287
2 Evolutionary Perspective to Socio-economic Inequality 290
3 Why Statistical Physics? 290
4 Processes Leading to Inequality and Broad Distributions 291
 4.1 Random Walk 291
 4.2 Combination of Exponentials 292
 4.3 Self-organized Criticality 292
 4.4 Multiplicative Processes 293
 4.5 Preferential Attachment 294
5 Income, Wealth & Energy 297
 5.1 Modelling Income and Wealth Distributions 298
 5.2 Is Wealth and Income Inequality Natural? 300
6 Urban and Similar Systems 300
 6.1 City Size 301
 6.2 Scaling of Urban Measures 302
 6.3 Firms 302
7 Consensus 303
 7.1 Voting 303
 7.2 Religion 304
 7.3 Modelling Opinion and Its Dynamics 306
8 Bibliometrics 309
 8.1 Annual Citation Indices 310
 8.2 Universality in Citation Distributions 314
9 Networks ... 315
10 Measuring Inequality 315
11 How to Deal with Inequality? 317
12 Discussions 319
References 320
Part IV Discussions and Commentary

Judging the Impact of ‘Econophysics’ Through Response to Questionnaire .. 327
Kishore C. Dash
1 Introduction. ... 327
2 Response to Questionnaire. 331
 2.1 Questions ... 331
 2.2 Answers ... 332
3 Conclusion .. 347
References .. 348

Commentary: Influence of Econophysics Research on Contemporary Researches in Social Sciences 349
Asim Ghosh
1 Introduction. ... 349
2 Result .. 350
3 Conclusion ... 351
References .. 351

Photo .. 353