Cognitive Radio Networks
Cognitive Radio Networks

Medium Access Control for Coexistence of Wireless Systems
Preface

During the last few decades, our use of or reliance on the radio spectrum has grown tremendously. Today, we rely on wireless devices and systems to not only enable on-demand, pervasive communications for a large proportion of the population, but also other critical application areas such as scientific and medical research, industrial control and automation, and public safety. As wireless systems and applications continue to proliferate, the demand for precious spectrum resources will continue to grow. For instance, it has been documented that since the release of the latest generation of smart phones, data traffic on some of the cellular networks has increased by over 6,000%. In the foreseeable future, we expect that the demand for spectrum will continue to increase as new wireless technologies and applications with high data throughput requirements continue to emerge. This insatiable appetite for additional spectrum resources cannot be met by simply allocating new spectrum. The usable capacity of spectrum must be expanded with innovative technologies, regulatory reforms, and removal of market barriers.

Cognitive radio is one of the innovative technologies that has the potential to effectively address the spectrum shortage problem and radically change the way we utilize spectrum. Because of its potential impact, various stakeholders—including regulatory policymakers, wireless device manufacturers, telecommunication operators, and academic researchers—have shown strong interest in it, especially with respect to research and development. Although numerous journal and conference publications, tutorials, and books on cognitive radio have been published in the last few years, the vast majority of them focus on the various physical-layer attributes of the technology. More importantly, these technical publications discuss the cognitive radio in isolation, essentially as a standalone system or network, with little regard for how it may interact with legacy wireless systems or how heterogeneous cognitive radio systems may collaborate with each other. Although this book’s main theme is cognitive radio, its specific focus areas are quite different from the existing literature. The primary aim of this book is to provide a comprehensive discussion on how cognitive radio technologies can be employed to enable efficient and harmonious coexistence of homogeneous as well as heterogeneous wireless systems and networks. Because the discussions in the book focus on the problem of coexistence of
wireless systems, most of the book’s contents relate to the medium access control layer, rather than the physical layer. In other words, the discussions in this book revolve around how cognitive radio technologies can be used to enable various wireless networks to coexist and efficiently share spectrum.

The intended readership of this book includes wireless communications industry researchers and practitioners as well as researchers in academia. The readership is assumed to have background knowledge in wireless communications and networking, although they may have no in-depth knowledge of cognitive radio technologies. The intention of this book is to introduce communication generalists to the technical challenges of the various coexistence techniques and mechanisms as well as solution approaches which are enabled by cognitive radios.

Below, we provide a brief summary of the contents of each chapter.

- **Chapter 1: Introduction.** This chapter includes an introduction to a few challenging problems related to the medium access control (MAC) layer protocol design for coexistence of cognitive radio networks.
- **Chapter 2: Taxonomy of Coexistence Mechanisms.** In this chapter, we discuss the background knowledge on existing coexistence mechanisms in wireless networks, and present a taxonomy that classifies the state-of-art research according to various criteria.
- **Chapter 3: Rendezvous of Cognitive Radios.** This chapter presents two channel hopping-based rendezvous protocols, for clock synchronous and asynchronous cognitive radio networks, respectively.
- **Chapter 4: Coexistence-aware Spectrum Sharing for Homogeneous Cognitive Radio Networks.** In this chapter, we present an inter base station (BS) Coexistence-Aware Spectrum Sharing protocol for improving the coexistence of infrastructure-based homogeneous cognitive radio networks.
- **Chapter 5: Frequency Reuse Over a Single TV White Space Channel.** In this chapter, we study the channel sharing problem where multiple network cells are forced to reuse a single TV white-space channel.
- **Chapter 6: Channel Assignment for Multi-hop Cognitive Radio Networks.** In this chapter, we propose the segment-based channel assignment algorithm for single radio interface, multi-hop cognitive radio networks.
- **Chapter 7: Ecology-inspired Coexistence of Heterogeneous Cognitive Radio Networks.** This chapter discusses challenges in heterogeneous coexistence mechanisms and proposes a mediation-based spectrum sharing mechanism for coexistence of heterogeneous wireless systems operating over the white-space.

We would like to acknowledge and thank a number of colleagues who have made this book possible. In particular, we would like to acknowledge Dr. Ruiliang Chen at Microsoft and Prof. Xiaoming Li at Peking University. Through collaborative research or discussions, the colleagues mentioned above have provided invaluable inputs that helped shape the contents of this book. We would also like to thank our publishers at Springer, in particular Jessica Lauffer and Charles Glaser, for their helpful guidance and encouragement during the creation of this book.
Contents

1 **Introduction** .. 1
 1.1 Coexistence Problems in Wireless Networks 1
 1.2 Medium Access Control Problems for Coexistence
 of CR Networks ... 2
 1.2.1 Rendezvous (Control Channel) Establishment 2
 1.2.2 Spectrum Sharing 3
 1.2.3 Frequency Reuse of a Single Channel 4
 1.2.4 Channel Assignment in Multi-hop Cognitive
 Radio Networks 5
 1.2.5 Coexistence of Heterogeneous Cognitive
 Radio Networks 6

2 **Taxonomy of Coexistence Mechanisms** 7
 2.1 Classification by Coexistence Mechanism’s Architecture (A) ... 8
 2.2 Classification by Coexistence Mechanism’s
 Control Channel (B) 11
 2.3 Classification by Coexistence Cycle State (C) 13
 2.4 Classification by Placement in the Protocol Stack (D) 14
 2.5 Classification by Coexistence Mechanism’s
 Synchronicity (E) 16
 2.6 Classification by Coexistence Mechanism’s
 Memory Usage (F) 16

3 **Rendezvous of Cognitive Radios** 19
 3.1 Rendezvous-Enabling Techniques 20
 3.1.1 Common Control Channel Based Rendezvous 20
 3.1.2 Channel Hopping Based Rendezvous 21
 3.2 Quorum Systems ... 22
 3.3 Network Model .. 23
3.4 The Quorum-Based Channel Hopping System 25
 3.4.1 Metrics for Evaluating Channel Hopping Systems 27
3.5 Optimal Synchronous Quorum-Based Channel Hopping Systems 29
 3.5.1 Minimizing the Maximum Time-to-Rendezvous 29
 3.5.2 Minimizing the Load ... 30
 3.5.3 Performance Evaluation ... 32
3.6 Asynchronous Channel Hopping System 35
 3.6.1 The Asynchronous Channel Hopping System with a Degree of Overlapping $m = 2$ 39
 3.6.2 The Asynchronous Channel Hopping System with Maximum Degree of Overlapping 41
 3.6.3 Optimal Asynchronous Channel Hopping Systems 46
 3.6.4 Asymmetric Optimal Asynchronous Channel Hopping Systems .. 48
 3.6.5 Symmetric Optimal Asynchronous Channel Hopping Systems .. 48
 3.6.6 Comparisons .. 55
 3.6.7 Performance Evaluation ... 55
3.7 Summary ... 59

4 Coexistence-Aware Spectrum Sharing for Homogeneous Cognitive Radio Networks .. 61
 4.1 Homogeneous Coexistence Mechanisms in IEEE 802.22 Networks 61
 4.1.1 PHY-Layer Support and MAC-Layer Control Messages in IEEE 802.22 61
 4.1.2 Non-exclusive Spectrum Sharing: Resource Renting 62
 4.1.3 Exclusive Spectrum Sharing 63
 4.1.4 Other Related Work .. 64
 4.2 Protocol Descriptions .. 64
 4.2.1 Basic Assumptions .. 64
 4.2.2 Dynamic Switching Between the Two Spectrum Sharing Modes .. 65
 4.2.3 The Channel Selection Mechanism 68
 4.2.4 The Channel Contention Procedure 69
 4.3 Performance Evaluation .. 71
 4.3.1 The 3-BS Scenario .. 72
 4.3.2 The 9-BS Scenario .. 73
 4.4 Summary ... 75
5 Frequency Reuse over a Single TV White Space Channel

5.1 System Model
 5.1.1 Uplink Soft Frequency Reuse
 5.1.2 Uplink Resource Allocation Problem
 5.1.3 A Game-Theoretic Framework

5.2 Game of Transmit Power Control
 5.2.1 Transmit Power Control Subproblem
 5.2.2 Multi-cell Transmit Power Control as Non-cooperative Game

5.3 Game of Subchannel Allocation
 5.3.1 Subchannel Allocation Subproblem
 5.3.2 Multi-cell SCA as Non-cooperative Game

5.4 A Two-Level Game-Theoretic Approach
 5.4.1 Local Uplink Resource Allocation Algorithm
 5.4.2 Two-Level Game-Theoretic Algorithm
 5.4.3 Implementation Variants

5.5 Simulation Results

5.6 Summary

6 Channel Assignment for Multi-hop Cognitive Radio Networks

6.1 Channel Assignment Strategies
 6.1.1 Link-Based Channel Assignment
 6.1.2 Flow/Component-Based Channel Assignment

6.2 Motivation for Segment-Based Channel Assignment
 6.2.1 Segment-Based Channel Assignment
 6.2.2 Performance Considerations

6.3 Segment-Based Channel Assignment
 6.3.1 Initial Handshake
 6.3.2 Channel Assignment
 6.3.3 Segment Maintenance

6.4 Performance Evaluation
 6.4.1 Simulation Setup
 6.4.2 Simulation Results

6.5 Summary

7 Ecology-Inspired Coexistence of Heterogeneous Cognitive Radio Networks

7.1 Heterogeneous Coexistence Scenarios

7.2 Technical Background
 7.2.1 The Mediator System
 7.2.2 Interspecific Competition in Ecology

7.3 Overview of the Protocol
 7.3.1 System Model
 7.3.2 Ecology-Inspired Spectrum Allocation
 7.3.3 Problem Formulation
About the Authors

Kaigui Bian received his B.S. degree in Computer Science from Peking University in 2001, and received his Ph.D. degree in Computer Engineering from Virginia Tech in 2011. He is currently an Associate Professor in the Institute of Network Computing and Information Systems, School of EECS at Peking University. His research interests include cognitive radio networks, mobile computing, network security, and privacy. He was a visiting scholar at Microsoft Research Asia in 2013. He is a member of the IEEE, the ACM, and the CCF.

Jung-Min Park received a Ph.D. degree in Electrical and Computer Engineering from Purdue University in 2003. He is currently an Associate Professor in the Department of Electrical and Computer Engineering at Virginia Tech, and the site director of a National Science Foundation (NSF) Industry-University Cooperative Research Center (I-UCRC) called Broadband Wireless Access & Applications Center (BWAC). As the site director of BWAC at Virginia Tech, Park is leading several sponsored research projects on wireless networks and network security. He is widely recognized for his pioneering work on enforcement and security problems in cognitive radio networks. His research interests include cognitive radio networks, spectrum sharing technologies, network security and privacy, and applied cryptography. Current or recent research sponsors include the NSF, National Institutes of Health (NIH), Defense Advanced Research Projects Agency (DARPA), Office of Naval Research (ONR), SANS (SysAdmin, Audit, Network Security) Institute, Motorola Solutions, Samsung Electronics, and SCA Techniques. More details on his research interests can be found at http://www.arias.ece.vt.edu and http://www.bwac.wireless.vt.edu/index.html. He is a recipient of the 2014 Virginia Tech College of Engineering Faculty Fellow Award, a 2008 NSF Faculty Early Career Development (CAREER) Award, a 2008 Hoeber Excellence in Research Award, a 1998 AT&T Leadership Award, and a coauthor of a paper that won the Best Paper Award at the 2014 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). He is a senior member of the IEEE and the ACM, and a member of the Korean–American Scientists and Engineers Association (KSEA).
Bo Gao is currently a Ph.D. student in the Department of Electrical and Computer Engineering at Virginia Tech. He received his Bachelor’s degree in Electrical Engineering from Beijing Jiaotong University, China in 2006, and his Master’s degree in Electrical Engineering from Shanghai Jiaotong University, China in 2009. His research interests include wireless networking, dynamic spectrum access, and network coexistence.