Signposts to Chiral Drugs
Describing the intrinsic attraction of basic research in organic synthesis, Elias J. Corey, Nobel Laureate in 1990, wrote in 1988: “The appeal of a problem in synthesis and its attractiveness can be expected to reach a level out of all proportion to practical considerations, whenever it presents a clear challenge to the creativity, originality and imagination of the expert in synthesis” [1].

A few years earlier, Vladimir Prelog, Nobel Laureate in 1975, had expressed a similar opinion in his typical laconic way: “Any problem of organic chemistry is a scientific challenge if observed by scientific eyes” (According to notes made by V. Šunjić after a conversation at the Burgenstock Conference on Stereochemistry, 1972). Creativity and scientific challenge in synthetic organic chemistry, in particular, because of its frequent broad application, are repeatedly recognized by many others, organic and other chemists and even scientists from the other disciplines.

During 25 years of teaching an undergraduate course on “Synthetic Methods in Organic Chemistry” and a graduate (Ph.D.) course on “Stereoselective (previously asymmetric) Synthesis and Catalysis in Organic Chemistry”, at the Faculty of Natural Sciences and Mathematics, University of Zagreb, one of us (VŠ) encountered an interesting phenomenon. The undergraduate course, mostly based on retrosynthetic analysis using the problem-solving approach introduced by Warren [2, 3] and elaborated by others [4–7], differed in its pragmatic approach from the graduate course, which was based on the discussion of exciting chemistry in original papers and monographies [8–14]. There was a notably different response of the students during these two courses. While the undergraduates participated intensively in discussions of possible retrosynthetic paths and proposed new syntheses, the graduates, in spite of the inclusion of up-to-date, exciting examples of non-catalytic, catalytic and biocatalytic stereoselective transformations, were less inclined to interact. Obviously, the future “experts in synthesis” (Corey) greatly preferred lectures in which target structures were well defined, and the complex synthetic problem was clearly defined. This is the basic premise of the current monograph.
The concept of this book was born out of our joint experience in teaching and research in academic institutions on the one hand, and our combined, more than 40 years participation in research projects in small and large pharmaceutical companies on the other. The volume collects together exciting achievements in synthetic organic chemistry, as they appeared during the development of target molecules, mostly chiral, enantiopure drugs. Fifteen target structures are selected to demonstrate these synthetic achievements, some of them are established drugs, the others are candidates for drugs under clinical research, one a natural product with broad application and one a library of lead molecules. In the introduction, we describe the various stages of research towards a new drug entity (NDE), as organized within the innovative pharmaceutical industry. The search for hits, improvement of biological properties from hits to leads and selection of clinical candidates are outlined, followed by the various phases of clinical research.

The sequence of chapters is roughly based on the (potential) clinical indications, but each chapter is complete in itself. The chapter abstracts are structured to enable the interested reader to easily identify the synthetic achievements and biological profile of the specific compound or structural class presented. These include mechanistic and stereochemical aspects of enantioselective transformations, new methodologies such as click chemistry, multi-component syntheses and green chemistry criteria, as well as brief information on the biological targets, mechanisms of action and biological and therapeutic profiles of target structures. Presentation of synthetic chemistry in each chapter is guided by the concept inherent in modern organic chemistry, that mechanistic organization ties together synthesis, reactivity and stereoelectronic structures of the key reagents or intermediates [15].

In the chemical schemes in this book, all specific, defined compounds or chemical entities are consecutively designated with Arabic numbers, while general formulae are listed with Roman numbers.

We are very grateful to the support and assistance provided by the publisher, Springer, particularly that from Dr. Hans-Detlef Klueber and Dr. Andrea Schlitzberger. Finally, we hope you, the reader, will find much to interest and inform you as you browse through the book, both initially and as a subsequent reference text.

Zagreb, Croatia
February 2011

Vitomir Šunjić
Michael J. Parnham

References

Contents

1 Organic Synthesis in Drug Discovery and Development 1
 1.1 Introduction ... 1
 1.2 Synthetic Organic Chemistry in Pharmaceutical R&D 2
 1.3 New Concepts in the Drug Discovery Process 5
 1.3.1 The Impact of Natural Products on Modern Drug Discovery 6
 1.3.2 Biologically Orientated Synthesis in Drug Discovery 8
 1.3.3 Incorporation of Genomics and DNA-templated Synthesis into Drug Discovery ... 9
 1.4 Conclusion ... 11
 References ... 11

2 Aliskiren Fumarate ... 13
 2.1 Introduction ... 13
 2.2 Renin and the Mechanism of Action of Aliskiren 14
 2.3 Structural Characteristics and Synthetic Approaches to Aliskiren .. 16
 2.3.1 Strategy Based on Visual Imagery, Starting from Nature’s Chiral Pool: A Dali-Like Presentation of Objects 18
 2.3.2 Fine-Tuning of the Chiral Ligand for the Rh Complex: Hydrogenation of the Selected Substrate with Extreme Enantioselectivities ... 21
 2.4 Conclusion ... 26
 References ... 26

3 (R)-K-13675 .. 29
 3.1 Introduction ... 29
 3.2 Peroxisome Proliferator-Activated Receptor α Agonists 29
 3.2.1 β-Phenylpropionic Acids .. 30
 3.2.2 α-Alk oxy-β-Arylpropionic Acids .. 31
 3.2.3 α-Aryloxy-β-Phenyl Propionic Acids 33
 3.2.4 Oxybenzoylglycine Derivatives .. 34
 3.3 Non-hydrolytic Anomalous Lactone Ring-Opening 35
7.4 General Synthetic Route ... 86
7.5 Stereoselective Reduction of Ketones and Imines Under Kinetic and Thermodynamic Control ... 87
 7.5.1 Diastereoselectivity of Hydrogenation of rac-tetralone-Methylimine: The Old (MeNH₂/TiCl₄/Toluene) Method Is Improved by Using MeNH₂/EtOH-Pd/CaCO₃, 60–65°C in a Telescop ed Process ... 87
 7.5.2 Kinetic Resolution of Racemic Methylamine: Hydrosilylation by (R,R)-(EBTHI)TiF₂/PhSiH₃ Catalytic System 88
 7.5.3 Catalytic Epimerization of the Trans- to the Cis-Isomer of Sertraline ... 90
 7.5.4 Stereoselective Reduction of Tetralone by Chiral Diphenyloxazaborolidine... 91
7.6 Desymmetrization of Oxabenzonorbornadiene, Suzuki Coupling of Arylboronic Acids and Vinyl Halides .. 92
7.7 Pd-Catalyzed (Tsuji-Trost) Coupling of Arylboronic Acids and Allylic Esters .. 94
7.8 Simulated Moving Bed in the Commercial Production of Sertraline ... 97
7.9 Conclusion .. 101
References... 101

8 1,2-Dihydroquinolines .. 103
8.1 Introduction.. 103
8.2 Glucocorticoid Receptor .. 104
8.3 Asymmetric Organocatalysis: Introducing a Thiourea Catalyst for the Petasis Reaction ... 105
 8.3.1 General Consideration of the Petasis Reaction 106
 8.3.2 Catalytic, Enantioselective Petasis Reaction 109
8.4 Multi-component Reactions: General Concept and Examples 112
 8.4.1 General Concept of Multi-component Reactions 112
 8.4.2 Efficient, Isocyanide-Based Ugi Multi-component Reactions 113
8.5 Conclusion .. 115
References... 115

9 (−)-Menthol .. 117
9.1 Introduction.. 117
9.2 Natural Sources and First Technological Production of (−)-Menthol ... 118
9.3 Enantioselective Allylic Amine–Enamine–Imine Rearrangement, Catalysed by Rh(I)-(−)-BINAP Complex 119
9.4 Production Scale Synthesis of Both Enantiomers 122
9.5 Conclusion.. 123
References... 123
10 Fexofenadine Hydrochloride ... 125
 10.1 Introduction .. 125
 10.2 Histamine Receptors as Biological Targets for Anti-allergy
 Drugs ... 126
 10.3 Absolute Configuration and “Racemic Switch” 127
 10.4 Retrosynthetic Analysis of Fexofenadine 129
 10.4.1 ZnBr₂-Catalyzed Rearrangement of α-Haloketones
 to Terminal Carboxylic Acids 131
 10.4.2 Microbial Oxidation of Non-activated C–H Bond 135
 10.4.3 Bioisosterism: Silicon Switch of Fexofenadine
 to Sila-Fexofenadine ... 137
 10.5 Conclusion .. 139
 References ... 139

11 Montelukast Sodium .. 141
 11.1 Introduction ... 141
 11.2 Leukotriene D₄ Receptor (LTD₄), CysLT-1 Receptor
 Antagonists ... 142
 11.3 Hydroboration of Ketones with Boranes from α-Pinenes
 and the Non-linear Effect in Asymmetric Reactions 144
 11.4 Ru(II) Catalyzed Enantioselective Hydrogen Transfer 148
 11.5 Biocatalytic Reduction with Ketoreductase KRED
 (KetoREDuctase) .. 150
 11.6 CeCl₃-THF Solvate as a Promoter of the Grignard Reaction:
 Phase Transfer Catalysis ... 150
 11.7 Conclusion .. 152
 References ... 153

12 Thiolactone Peptides as Antibacterial Peptidomimetics 155
 12.1 Introduction .. 155
 12.2 Virulence and Quorum-Sensing System of Staphylococcus
 aureus ... 156
 12.3 Development of Chemical Ligation in Peptide Synthesis 158
 12.4 Development of Native Chemical Ligation; Chemoselectivity
 in Peptide Synthesis ... 160
 12.5 Development of NCL in Thiolactone Peptide Synthesis 163
 12.6 Conclusion .. 167
 References ... 167

13 Efavirenz .. 169
 13.1 Introduction .. 169
 13.2 HIV-1 Reverse Transcriptase Inhibitors 170
 13.2.1 Steric Interactions at the Active Site 171
13.3 Asymmetric Addition of Alkyne Anion to C=O Bond with Formation of Chiral Li⁺ Aggregates 173
13.3.1 Mechanism of the Chirality Transfer 173
13.3.2 Equilibration of Lithium Aggregates and the Effect of Their Relative Stability on Enantioselectivity 175
13.4 Scale-up of Alkynylation Promoted by the Use of Et₂Zn 176
13.5 Conclusion .. 177
References .. 177

14 Paclitaxel .. 179
14.1 Introduction .. 179
14.2 Disturbed Dynamics of Cellular Microtubules by Binding to β-Tubulin ... 180
14.3 Three Selected Synthetic Transformations on the Pathway to Paclitaxel ... 181
14.3.1 Intramolecular Heck Reaction on the Synthetic Route to Baccatin III ... 182
14.3.2 Trifunctional Catalyst for Biomimetic Synthesis of Chiral Diols: Synthesis of the Paclitaxel Side-Chain 185
14.3.3 Zr-Complex Catalysis in the Reductive N-deacylation of Taxanes to the Primary Amine, the Key Precursor of Paclitaxel ... 192
14.4 Conclusion .. 194
References .. 194

15 Neoglycoconjugate .. 197
15.1 Introduction .. 197
15.2 Human α-1,3-Fucosyltransferase IV (Fuc-T) 198
15.3 Click Chemistry: Energetically Preferred Reactions 200
15.4 Target-Guided Synthesis or Freeze-Frame Click Chemistry 202
15.5 Application of Click Chemistry to the Synthesis of Neoglycoconjugate 1 ... 205
15.6 Conclusion .. 207
References .. 207

16 12-Aza-Epothilones ... 209
16.1 Introduction .. 209
16.2 Epothilones: Mechanism of Action and Structure–Activity Relationships .. 210
16.3 Extensive vs. Peripheral Structural Modifications of Natural Products ... 212
16.4 Ring Closure Metathesis: An Efficient Approach to Macrocyclic “Non-natural Natural Products” 213
16.5 Diimide Reduction of the Allylic C=C Bond 220
16.6 Conclusion .. 222
References... 222

Synthetic Methods and Concepts Discussed in the Chapters 225

Index ... 229
Abbreviations and Acronyms

A
- **Aβ** : Amyloid-beta-peptide
- **AChE** : Acetylcholine esterase
- **ACL** : Assisted chemical ligation
- **Ac₂O** : Acetic anhydride
- **AD** : Alzheimer’s disease
- **ACE** : Angiotensin-converting enzyme
- **ADME** : Absorption–distribution–metabolism–excretion
- **agr** : Accessory gene regulator
- **agrA (B,C,D)** : Accessory gene regulator A (B,C,D)
- **AIDS** : Acquired immunodeficiency syndrome
- **AIPs** : Autoinducing peptides
- **Amberlyst 15** : Sulphonic acid-based cationic ion exchange resin
- **4-AMS** : Molecular sieves of 4Å
- **API** : Active pharmaceutical ingredient
- **APP** : Amyloid precursor protein
- **AT1** : Angiotensin II type 1 receptor
- **AUC** : Area under the curve

B
- **BINA** : 2,2′-*bis* (Diphenylphosphino)-1,1′-binaphthyl
- **Bioisosteres** : Substituents or groups with similar physical or chemical properties that impart similar biological properties to a parent compound
- **Boc** : Butoxycarbonyl
- **BOP-Cl** : *bis*-(2-Oxo-3-oxazolidinyl)phosphonic chloride

C
- **CBS-QB3** : Complete basis set-quantum B3
- **CC** : Clinical candidate
- **CD** : Candidate drug
CL Chemical ligation
Click chemistry Reliable chemical transformations that generate collections of test compounds
CNS Central nervous system
COD 1,5-Cyclooctadiene
Cp Cyclopentadienyl
Cp₂TiH Titanium(bis-cyclopentadienyl)hydride
CSA Camphor sulphonic acid
CSP Chiral stationary phase
CYP 3A4 Cytochrome P450
CYP/hERG Cytochrome P450/human ether-à-go go related gene (potassium ion channel) drug–drug interaction screening assay

D
DEAD Diethylazidodicarboxylate
DBU 1,8-Diazabicyclo[5,4,0]undec-7-ene, strong crowded base
DCC Dicyclohexylcarbodiimide
DCE Dichloroethane
DCM Dichloromethane
DHP Dihydropyrrane
DHQ Dihydroquinine
DHQD Dihydroquinidine
DHQ-PHN Dihydroquinyl phenanthroline
DHQ-MeQ Dihydroquinyl 4’-methyl-2’-quinolyl dihydroquinine
(DHQ)₂-PHAL bis-Dihydroquinyl phthalazine
(DHQD)₂-PHAL bis-Dihydroquinidyl phthalazine
DIA Diethyamine
DIAD Diisopropylazidocarboxylate
DIBAL-H Diisobutylaluminium hydride
DIEA Diisopropylethylamine
DMAP 4-Dimethylaminopyridine
DMSO Dimethylsulphoxide
DMF Dimethylformamide
DOS Diversity-oriented synthesis
DPPA Diphenylphosphorylazide
DPP-4 Dipetidyl peptidase 4
DTS DNA-templated organic synthesis
DuPHOS Chiral, bidentate phosphine ligand developed by DuPont company

E
EBTHI Ethylene-bis(etas-tetrahydroindenyl)
EC₅₀ Effective concentration producing 50% of maximal response
EDG Electron-donating group
Abbreviations and Acronyms

e.e. Enantiomeric excess
ESM Electrospray mass spectrometry
EtOAc Ethylacetate
EWG Electron-withdrawing group

F
Fc Ferrocene
FDA Food and Drug Administration (USA)
FGI Functional group interconversion
Fmoc Fluorenlymethoxy carbonyl
Fuc-T alpha-1,3-Fucosyl transferase

G
GABA Gamma-aminobutyric acid
GCR Glucocorticoid receptor
GDP-fucose Guanidine diphosphate-beta-1-fucose
GIP Gastric inhibitory peptide
GLP1 Glucagon-like peptide 1
GMP Guanosine monophosphate
GPCR G-protein-coupled receptors
G3MP3 Gaussian method for very accurate calculation of energies

H
HAART Highly active antiretroviral therapy
HBTU O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluorophosphate
HBP Halogen-binding pocket
HDL High-density lipoprotein
HIV Human immunodeficiency virus
HTS High-throughput synthesis (or screen)
Hunig’s base N,N-diisopropylethylamine
5-HT 5-Hydroxytryptamine

I
IC$_{50}$ Concentration at which 50% inhibition of maximum response is achieved
Iosiphos Ferrocene-based, chiral bidentate phosphine ligands
IPEA Isopropylethyl amine
(_ipc)$_2$BCl Chlorodiisopinocampheyl borane

L
LacNAC N-acetyllactosamine
LBD Ligand-binding domain
LC/MS Liquid chromatography/mass spectrometry
LDA Li-diisopropylamide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH</td>
<td>Layered double hydroxide</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LiHMDS</td>
<td>Lithium hexamethyldisilazane</td>
</tr>
<tr>
<td>Log P</td>
<td>Logarithm of the ratio of the concentrations of the unionized solute in two solvents</td>
</tr>
<tr>
<td>LPPS</td>
<td>Liquid phase protein synthesis</td>
</tr>
<tr>
<td>L-Selectride</td>
<td>Lithium tri-sec-butyl(hydrido)borate</td>
</tr>
<tr>
<td>LTC4, LTD4, LTE4</td>
<td>Leukotrienes C4, D4, E4</td>
</tr>
<tr>
<td>MAO</td>
<td>Monoamine oxidase</td>
</tr>
<tr>
<td>MCR</td>
<td>Multicomponent reaction</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistance</td>
</tr>
<tr>
<td>Mesylate</td>
<td>Methanesulphonic ester moiety</td>
</tr>
<tr>
<td>MeQ</td>
<td>4′-Methyl-2′-quinolyl dihydroquinine</td>
</tr>
<tr>
<td>MsCl</td>
<td>Methanesulphonic acid chloride</td>
</tr>
<tr>
<td>N-Boc</td>
<td>N-Benzzyloxycarbonyl</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NCE</td>
<td>New chemical entity</td>
</tr>
<tr>
<td>NCL</td>
<td>Native chemical ligation</td>
</tr>
<tr>
<td>NDE</td>
<td>New drug entity</td>
</tr>
<tr>
<td>NLE</td>
<td>Non-linear effect</td>
</tr>
<tr>
<td>NME</td>
<td>New molecular entity</td>
</tr>
<tr>
<td>NMO</td>
<td>4-Methyl-morpholine-N-oxide</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methylpyrrolidine</td>
</tr>
<tr>
<td>NNRTI</td>
<td>Non-nucleoside reverse transcriptase inhibitor</td>
</tr>
<tr>
<td>OPMB</td>
<td>para-Methoxybenzyl</td>
</tr>
<tr>
<td>OTBS</td>
<td>O-tertiary-Butyldimethylsilyl</td>
</tr>
<tr>
<td>PADA</td>
<td>Dipotassium diazidocarboxylate</td>
</tr>
<tr>
<td>PCy3</td>
<td>Tricyclohexyl phosphine</td>
</tr>
<tr>
<td>PDC</td>
<td>Pyridinium chlorochromate</td>
</tr>
<tr>
<td>PEGA</td>
<td>Poly[acryloyl-bis(aminopropyl)polyethylene glycol]</td>
</tr>
<tr>
<td>Peptone</td>
<td>Various water-soluble protein derivatives obtained by partial hydrolysis of a protein by an acid or enzyme during digestion and used in culture media in bacteriology</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>P-gp</td>
<td>P-glycoprotein</td>
</tr>
<tr>
<td>PHAL</td>
<td>Phthalazine</td>
</tr>
<tr>
<td>Phen</td>
<td>1,10-Phenanthroline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PHN</td>
<td>Phenanthrenyl dihydroquinine</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetics</td>
</tr>
<tr>
<td>PMB</td>
<td>para-Methoxybenzyl</td>
</tr>
<tr>
<td>PoC</td>
<td>Proof of concept</td>
</tr>
<tr>
<td>PPA</td>
<td>Polyphosphoric acid</td>
</tr>
<tr>
<td>PPARα</td>
<td>Peroxisome proliferator-activated receptor alpha</td>
</tr>
<tr>
<td>PPTS</td>
<td>Pyridinium para-toluenesulphonate</td>
</tr>
<tr>
<td>4-PPy</td>
<td>4-Phenylpyridine</td>
</tr>
<tr>
<td>PSA</td>
<td>Polar surface area</td>
</tr>
<tr>
<td>pTsOH</td>
<td>para-Toluenesulphonic acid</td>
</tr>
<tr>
<td>Q</td>
<td>Quantitative structure–activity relationship</td>
</tr>
<tr>
<td>QSAR</td>
<td>Quantitative structure–activity relationship</td>
</tr>
<tr>
<td>R</td>
<td>Renin–angiotensin–aldosterone system</td>
</tr>
<tr>
<td>RaNi</td>
<td>Raney nickel catalyst</td>
</tr>
<tr>
<td>RCM</td>
<td>Ring closure metathesis</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and development</td>
</tr>
<tr>
<td>REM</td>
<td>Regenerative Michael receptor</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcriptase</td>
</tr>
<tr>
<td>S</td>
<td>Structure (biological) activity relationship</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure (biological) activity relationship</td>
</tr>
<tr>
<td>SCRAM</td>
<td>[CpIrI$_2$]$_2$ (Cp = cyclopentadienyl)</td>
</tr>
<tr>
<td>SERT</td>
<td>Plasma membrane serotonin transporter</td>
</tr>
<tr>
<td>SMB</td>
<td>Simulated moving bed chromatography</td>
</tr>
<tr>
<td>SPS</td>
<td>Solid phase synthesis</td>
</tr>
<tr>
<td>SPPS</td>
<td>Solid phase protein synthesis</td>
</tr>
<tr>
<td>SRS-A</td>
<td>Slow-reacting substance of anaphylaxis</td>
</tr>
<tr>
<td>SRS</td>
<td>Slow-reacting substance</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selective serotonin uptake inhibitor</td>
</tr>
<tr>
<td>T</td>
<td>Tricyclic antidepressants</td>
</tr>
<tr>
<td>TACs</td>
<td>Tricyclic antidepressants</td>
</tr>
<tr>
<td>TBAB</td>
<td>$tetra-n$-Butylammonium bromide</td>
</tr>
<tr>
<td>TBAF</td>
<td>$tetra-n$-Butylammonium fluoride</td>
</tr>
<tr>
<td>TBS</td>
<td>$tert$-Butyldimethylsilyl</td>
</tr>
<tr>
<td>TBSCl</td>
<td>$tert$-Butyl-dimethylsilyl-chloride</td>
</tr>
<tr>
<td>TBSOTf</td>
<td>$tert$-Butyl-dimethylsilyl-trifluoracetate (trflate)</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 diabetes mellitus</td>
</tr>
<tr>
<td>TCEP</td>
<td>$tris$-(2-Carboxy)ethyl phosphine</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-Tetramethylpiperidine-1-oxyl</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoracetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>TGS</td>
<td>Target-guided synthesis</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofurane</td>
</tr>
<tr>
<td>THP</td>
<td>Tetrahydropyrene</td>
</tr>
<tr>
<td>TIS</td>
<td>Triisopropylsilane</td>
</tr>
<tr>
<td>TM</td>
<td>Target molecule</td>
</tr>
<tr>
<td>TM domain</td>
<td>Transmembrane domain</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl group</td>
</tr>
<tr>
<td>TMSCl</td>
<td>Trimethylsilyl chloride</td>
</tr>
<tr>
<td>TMSI</td>
<td>Trimethylsilyl iodide</td>
</tr>
<tr>
<td>TON</td>
<td>Turnover number</td>
</tr>
<tr>
<td>Tosylate</td>
<td>Toluenesulphonic ester moiety</td>
</tr>
<tr>
<td>TPAP</td>
<td>Perruthenate complex</td>
</tr>
<tr>
<td>TriFer</td>
<td>Ferrocene-based C$_2$-symmetric diphosphine ligand</td>
</tr>
<tr>
<td>Triflate</td>
<td>Trifluoromethanesulphonic moiety</td>
</tr>
<tr>
<td>Triton B</td>
<td>Benzyl trimethyl ammonium hydroxide</td>
</tr>
<tr>
<td>TRPM8</td>
<td>Transient receptor potential cation channel subfamily M member 8</td>
</tr>
<tr>
<td>TsDPEN</td>
<td>(1R,2R)-N-(p-tolylsulphonyl)-1,2-diphenylethane</td>
</tr>
<tr>
<td>TsOH</td>
<td>Toluenesulphonic acid</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>YMS</td>
<td>Culture medium supplemented with soybean peptones</td>
</tr>
</tbody>
</table>