Virtual Endoscopy and 3D Reconstruction in the Airways Nabil A. Shallik • Abbas H. Moustafa Marco A. E. Marcus Editors

Virtual Endoscopy and 3D Reconstruction in the Airways

Editors Nabil A. Shallik Department of Clinical Anesthesiology Weill Cornell Medical College in Qatar Doha Qatar

Department of Anesthesiology ICU and Perioperative Medicine Hamad Medical Corporation Doha Qatar

Department of Anesthesiology and Surgical Intensive Care Faculty of Medicine Tanta University Tanta Egypt

Marco A. E. Marcus Department of Anesthesiology ICU and Perioperative Medicine Hamad Medical Corporation Doha Qatar

Department of Clinical Anesthesiology Weill Cornell Medical College in Qatar Doha Qatar

Department of Clinical Anesthesiology Qatar University Doha Qatar

ISBN 978-3-030-23252-8 ISBN 978-3-030-23253-5 (eBook) https://doi.org/10.1007/978-3-030-23253-5

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Abbas H. Moustafa Clinical Radiology and Medical Imaging Department Hamad Medical Corporation Doha Qatar

Diagnostic Radiology and Medical Imaging El Minia University El Minia Egypt

Preface

New technologies in airway management never cease to amaze me, and it is especially wonderful to be existed in a period when rapid medical advances are changing the clinical practice landscape with reassuring certainty and frequency—having seen the world around me slowly transition from 2D to 3D imaging and even 4D in certain cases! It was only a matter of time before clinicians would find themselves needing 3D imaging on a regular basis.

In less than 10 years, virtual endoscopy and 3D reconstruction have spread all around the world, and the diffusion of this technique may be traced through the increasing number of published papers in the literature. I have personally kept in touch with the major advances in the field and have used virtual endoscopy for many of my patients. Having been in the field of airway management for 20 years, I can confidently attest to its robustness and efficacy in managing hitherto impossible to intubate patients.

From my experience and those of my colleagues, we have gathered a lot of knowledge and wisdom on the subject, and I am delighted to present the first edition of our book *Virtual Endoscopy and 3D Reconstruction in the Airways*.

While this book is mainly intended for anesthesia trainees and consultants, we believe it would be well suited for intensive care physicians, emergency physicians, radiologists, ORL-HNS surgeons, maxillofacial surgeons, pulmonologists, paramedical staff, and medical students.

The content includes a brief review of the fundamental airway anatomy and moves onto radiologic and virtual 3D evaluation of normal and diseased airways. The discussion also deals with the use of this technology in oral, nasal, maxillofacial, and skull base surgeries. We also discuss about 3D virtual endoscopy in ICU settings, augmented reality visualization in pulmonary interventions, and implications of 3D printing on airway management. There is a section on challenging cases derived from real patient experiences in our hospital. The book ends with future perspectives and recommendations.

While we did our best to prevent any misinformation of any form, we would urge our readers to inform us of any such error, including spelling or contextual errors. We also would advise that this book certainly does not replace professional or expert guidance and consultation.

I am much thankful to my wife, sons, and daughter for their continuous help in all stages of this book.

I would also like to thank Dr. Hanan Mawlana for her constant support while editing this unique book and to all the participating authors for their contribution.

Thank you and enjoy your book!

Doha, Qatar

Nabil A. Shallik

Preface

Ever since the dawn of time, mankind has brought forth innumerable innovations, and the medical field is a prime example. As a radiologist, I firmly believe that an image is worth a thousand words, as the saying goes, and this could not be more true with the advent of 3D reconstructions, volume rendering techniques, and virtual endoscopy (VE). In today's world, it is difficult to imagine living without technology. Some of the newest innovations today were either in the realm of fiction years ago or were just a seed in someone's mind, ready to evolve into something far greater.

Computer-aided diagnosis (CAD), coupled with VE, can inevitably aid in providing better healthcare.

3D printing can be done for difficult and complicated cases, as surgeons will have a physical model of the pathology to have a clear approach to proceed with the surgery, and can be a great tool to use when teaching junior colleagues.

Many people consider 3D imaging and VE as difficult tasks; however, when well practiced, it is considered a great asset with limitless clinical value.

In some respects, the workstation of a radiologist is their own high-end video games console, just like Sony's PlayStation 4 capable of rendering millions of high-fidelity imaging metadata, as well as providing aesthetically pleasing and clear information.

I am inviting all our colleagues to practice the 3D imaging and VRT techniques which are considered fun with great clinical impact and value; please enjoy.

Doha, Qatar

Abbas H. Moustafa

Preface

Within a fast-changing world like ours, very detailed descriptions are often important. To get autonomous cars running perfectly, you need detailed maps and instructions to navigate the cars through a jungle of obstacles.

So too, the future of surgery lies with automatization; through automatization, we seek to get a safe and stable product free of human error. Automatization provides potential to extract consistent and standardized information from patients, such as genetic profiles for pharmacokinetic modelling and dexterous robots as surgeons and anesthesiologists to be handled by experts of course! However, for automatization in anesthesiology, absolute accuracy and meticulous detail of anatomy are needed, which would have to be even more precise than the detailed maps we need to drive autonomous cars. To make robots that intubate patients, we first need even more precise understanding and detail of the anatomy of the airway. This book can bring us to that future of automatization!

Let us start first by minimizing dangerous situations, such as "cannot intubate/cannot ventilate," which can be accomplished through better training programs, better tools, and better understanding of the airway.

Different angles from different specialists give us better understanding about the airway. A book about the anatomy of the airway is therefore essential.

Hopefully, all will read this book with pleasure. I congratulate every author for the effort they put in and the other editors especially Dr. Nabil for their patience and endurance.

Happy reading.

Doha, Qatar

Marco A. E. Marcus

Acknowledgments

The preparation of the *Virtual Endoscopy and 3D Reconstruction in the Airways* book has required the help and cooperation of many. To each individual, we acknowledge our debt of gratitude. It has been both an honor and a privilege to have worked with all of the authors who are expert anesthesiologists, radiologists, surgeons, and technologists from across the world.

First and foremost, we would like to extend our gratitude to Mr. Samir R. Khiste, a radiology technologist who did a great job in 3-D reconstruction of our clinical cases. Also, we would like to thank Dr. Serag Kamel for editing the diagrams and photos for normal anatomy chapter and to Dr. Abderrazak Sahraoui for his talent in photography of our 3-D printed projects.

The staff at Springer have contributed in countless ways, with competence, patience, and hard work, particularly Ms. Reshmi Rema and Mr. Andrea Ridolfi who kept us on task and played a pivotal role in the quality of the final written text.

We especially wish to express our deep appreciation to the Anesthesia, ICU, and Perioperative Medicine Department and Clinical Radiology & Medical Imaging Department, both at Hamad Medical Corporation, Doha, Qatar; without their relationships, we would not have become the editors of this book.

Lastly, we would like to thank from the bottom of our hearts our God for helping us make this work feasible and our families whose understanding, forbearance, and support made this book possible.

Contents

1	Introduction	1
2	Review of Upper Airway Anatomy and Its Clinical Application	3
3	Radiological Evaluation of the Airway: One-Stop Shop Abbas H. Moustafa and Nabil A. Shallik	15
4	Evaluation of the Normal Airway Using Virtual Endoscopy and Three-Dimensional Reconstruction Nabil A. Shallik, Abbas H. Moustafa, and Yasser Hammad	31
5	Virtual Endoscopy and 3-D Reconstruction in Patients with Airway Pathology Imran Ahmad, Britta Millhoff, Sarah Muldoon, and Kayathrie Jeyarajah	39
6	Virtual Endoscopy and 3-D Reconstruction in the Nose, Paranasal Sinuses, and Skull Base Surgery: New Frontiers Shanmugam Ganesan, Hamad Al Saey, Natarajan Saravanappa, Prathamesh Pai, Surjith Vattoth, and Michael Stewart	53
7	Computer-Assisted 3D Reconstruction in Oral and Maxillofacial Surgery	67
8	Virtual Endoscopy and 3-D Reconstruction/Prototyping in Head and Neck Surgeries. Hassan Mohammed, Hassan Haidar, Nabil A. Shallik, Amr Elhakeem, Majid Al Abdulla, and Zenyel Dogan	85
9	Perspectives in the Current and Future Use of Augmented Reality Visualization in Thoracic Surgery and Pulmonary Interventions Mohamed A. Elarref, Ahmed Aljabary, Nabil A. Shallik, Mohamed Abbas, and Noran Elarif	101

10	Role of Virtual Endoscopy and 3-D Reconstruction in Airway
	Assessment of Critically Ill Patients
	Adel E. Ahmed Ganaw, Moad Ehfeda, Nissar Shaikh,
	Marcus Lance, Arshad Hussain Chanda, Ali O. Mohamed
	Belkair, Muhammad Zubair Labathkhan, and Gamal Abdullah
11	Three-Dimensional Printing and Its Implication on Airway
	Management
	Yasser Al-Hamidi, Abdulla Baobeid, and Nabil A. Shallik
12	Challenging Clinical Cases Discussion

12	Challenging Clinical Cases Discussion	1
	Nabil A. Shallik, Abbas H. Moustafa, and Amr Elhakeem	

Abbreviations

2-D	Two-dimensional
2-D MPR	Two-dimensional multi-planar reconstructions
3-D	Three-dimensional
4-D	Four-dimensional
A & E	Accident and emergency
ABS	Acrylonitrile butadiene styrene
AD	Arytenoid dislocation
AP	Anteroposterior
AR	Augmented reality
AS	Aortic stenosis
AS	Arytenoid subluxation
ASA	American Society of Anesthesiologists
ATLS	Advanced trauma life support
BI	Bronchus intermedius
BMI	Body mass index
BPF	Bronchopleural fistula
C-MPR	Curved multi-planar reconstruction protocol
CAD	Computer-aided design
CAS	Computer-assisted surgery
CFD	Computational fluid dynamics
CMF	Cranio-maxillofacial surgery
CN	Cranial nerve
CoCr	Cobalt chromium
CPAP	Continuous positive airway pressure
CSF	Cerebrospinal fluid
СТ	Computed tomography
CTM	Cricothyroid membrane
CV	Cervical vertebrae
DED	Directed energy deposition
DICOM	Digital imaging and communications in medicine
DISH	Diffuse idiopathic skeletal hyperostosis
DLP	Direct light processing
DO	Distraction osteogenesis
DOD	Drop on demand
EBM	Electron beam melting
FBA	Foreign body aspiration
FDM	Fused deposition material

FESS	Functional endoscopic sinus surgery
FOB	Fiber-optic bronchoscopy
FT	Flexible tracheobronchoscopy
GE	General electric
HU	Hounsfield units
IGS	Image-guided surgery
IIG	Inter-incisor gap
IJV	Internal jugular vein
IV	Intravenous
IVS	Interactive virtual simulation
LMA	Larvngeal mask airway
MDCT	Multi-detector computed tomography
MDCT (VB)	Multi-detector computed tomography virtual bronchoscopy
MinIPs	Minimum intensity projections
MIP	Maximum intensity projection
MPR	Multi-planar reformations
MPR	Multi-planar reconstruction
MPRs	Multi-planar reformations
MRI	Magnetic resonance imaging
NAP4	The Fourth National Audit Project
NiTi	Nickle titanium
OAP	Obstructing airway pathology
OPG	Orthonantomogram
OR	Operating room
OSA	Obstructive sleep appea
PACS	Patient archive and communication system
PRE	Powder bed fusion
PEEK	Polyether ether ketone
PET/CT	Positron emission tomography-computed tomography
PFR	$PaO_{a-to}-FiO_{a}$ ratios
PLA	Polylactic acid
SARI	Simplified airway risk index
SGD	Supraglottic device
SHS	Selective heat sintering
SIIS	Smoke inhalation injury
SI A	Stereolithography apparatus
SLA	Selective laser sintering
SSD	Shaded surface display
STI	Standard tessellation language
T_R	Tracheal-bronchial
I-D TRI	Tracheobronchial injury
TEE	Tracheoesophageal fistula
TM	Tumpanic membrane
	Thuro montal distance
	Tamperomandibular joint
	Temperomandibular joint ankylosis
	Transportheter mitral value rocain
	Transcatherer mitral valve repair
IEF/IOF	racneo-osopnagear Fistura

TPN	Total parenteral nutrition
TTP	Tissue transparent projection/Tissue transition projection
US	Ultrasound
UV	Ultraviolet
VB	Virtual bronchoscopy
VE	Virtual endoscopy
VPI	Velopharyngeal insufficiency
VR	Virtual reality
VRT	Volume rendering techniques
VSP	Virtual surgical planning
WHO	World Health Organization

List of Videos

Movie 3.1	Reconstructed images resembling orthopantomogram-like images (OPG—panoramic view) using curved MPR
Movie 3.2	technique The resultant 3-D images can be demonstrated and dis- played along any axis freely at 360°, features that give more perspectives and hidden relations that cannot be appreciated by any other modalities
Movie 3.3	Normal virtual endoscopy of the airway totally resembling the conventional endoscopic images
Movie 3.4	Virtual endoscopy fly-through technique showing normal finding of VE from nose to carina
Movie 3.5	Detailed VRT and post-processing techniques for full and detailed evaluation of the airway
Movie 3.6	Detailed VRT and post-processing techniques for full and detailed evaluation of the airway
Movie 3.7	Detailed VRT and post-processing techniques for full and detailed evaluation of the airway
Movie 4.1	Normal VE video series from nose to carina
Movie 4.2	Normal VE video series from nose to carina
Movie 4.3	Normal VE video series from nose to carina
Movie 4.4	VRT reconstruction image of the skin contour as well as the cartilaginous framework of the nose is demonstrated clearly using the VRT model
Movie 5.1	Real-time assessment of the upper airway obtained by flex- ible naso-endoscopy (the main editor is the one appearing in the video)
Movie 5.2	Volume-rendering technique TTP showing the level and extent of the trans-glottic indentation and displacement of the airway by the mass lesion
Movie 5.3	Glottic tumour involving the arytenoid cartilages seen by VE movie
Movie 5.4	Large supraglottic obstructing airway pathology arising from the right vallecula and pushing the epiglottis over to the left proved by VE movie

Movie 5.5	VE of a patient with a base of tongue tumour and the abnor- mally shaped epiglottis
Video 7.1	Reconstructed images resembling orthopantomogram-like
	technique
Movie 8.1	3-D reconstruction of foreign body ingestion using differ-
	delineate the metallic FB (needle) and its relation to the
	different adjacent structures
Movie 8.2	3-D reconstruction of foreign body ingestion using differ-
	ent series and reconstruction methodology to accurately
	delineate the faint FB (fish bone) and its relation to the dif-
Maria 9.2	2 D reconstruction of fourier hade in partice using differ
Movie 8.5	3-D reconstruction of foreign body ingestion using differ-
	delineate the faint EB (fish bone) and its relation to the dif-
	ferent adjacent structures
Movie 8.4	Virtual endoscopy evaluation inside the trachea showing
	no extension of the FB into the tracheal lumen
Movie 8.5	Preoperative naso-endoscopic evaluation revealed the pres-
	ence of abnormal mucosal lined drumstick-shaped struc-
	ture of odd presentation, yet with no signs of malignancy or
	hyper-vascularity
Movie 8.6	3-D reconstruction video shows displaced blade of the
	hyoid bone, in which the thyroid mass lesion was clearly visualized
Movie 8.7	Naso-endoscopic assessment revealed a web formation at
	the level of the glottis extending from the anterior commis-
	sure to the junction between the anterior two-thirds and posterior one-third of the vocal cord
Movie 8.8	Virtual endoscopic evaluation was done which showed the
	web to be at a supraglottic region, while the glottic region
	was clear
Movie 8.9	Virtual endoscopic evaluation was done which showed the
	web to be at a supraglottic region, while the glottic region
	was clear
Movie 9.1	Virtual bronchoscopy and VRT movies as a non-invasive
	method that allows accurate grading of tracheobronchial
Maria 0.2	stenosis
Movie 9.2	MDC1 scan reveals absent left lung, oblicerated left main
	significant hyperinflation of the right lung crossing to the
	left through the anterior mediastinum
Movie 93	MDCT scan reveals absent left lung obliterated left main
1110110 7.5	bronchus with nippling, absent left pulmonary artery and
	significant hyperinflation of the right lung crossing to the
	left through the anterior mediastinum

Movie 9.4	MDCT scan reveals absent left lung, obliterated left main
	bronchus with nippling, absent left pulmonary artery and
	significant hyperinflation of the right lung crossing to the
	left through the anterior mediastinum
Movie 9.5	MDCT scan reveals absent left lung, obliterated left main
	bronchus with nippling, absent left pulmonary artery and
	significant hyperinflation of the right lung crossing to the
	left through the anterior mediastinum
Movie 10.1	VB shows external nonmucosal compressions on the bron-
	chial wall that cause indentation upon the related part of
	the trachea with subsequent reduction of its AP dimension
Movie 10.2	VB shows external compressions caused by normal ana-
	tomic structure (esophagus)
Movie 10.3	Virtual endoscopy for a case of tracheal stenosis demon-
	strating the level and extent
Movie 10.4	Conventional flexible endoscopic evaluation for a case of
	TOF
Movie 11.1	Shows 3-D printed prototype and develop new medical
	tools of video-laryngoscopy (Shalliscope) for endotracheal
	intubation
Movie 12.1	TTP of the airway showing significant reduction of the air-
	way caliber
Movie 12.2	Circular hyoid bone demonstrated in the VRT images
	which is rotated 360 degrees. Note that the superior cornu
	of the thyroid cartilage is sharing in the same process
Movie 12.3	CA right side maxilla with right-sided sizable highly vas-
	cular metastatic neck lymphadenopathy mass lesion
Movie 12.4	CA right side maxilla with right-sided sizable highly vas-
	cular metastatic neck lymphadenopathy mass lesion

Electronic Supplementary Material is available in the online version of the related chapter on SpringerLink: http://link.springer.com/