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Supervisor’s Foreword

The question of whether an isolated quantum many-body system relaxes is a central
problem at the interface between microscopic quantum dynamics and statistical
physics. It is of high relevance in many diverse fields, ranging from decoherence in
quantum information and metrology to the complex dynamics in high-energy
physics and cosmology. Moreover, relaxation processes are intimately related to the
question if and how the classical world at the macro-scale can emerge from the
unitary quantum evolution at the micro-scale.

The thesis of Bernhard Rauer investigates a series of questions that are highly
contested in this context: How does an isolated quantum many-body system relax?
To what extent and through which processes is the memory of an initial state erased
during time evolution? How does a classical ensemble description in the sense of
statistical physics emerge from the underlying quantum evolution when an actual
environment is absent?

Over the last years, ultracold gases have emerged as an ideal model system to
study these questions. They are nearly perfectly isolated and a large set of tools is
available to manipulate and probe their many-body physics in a controlled setting.
One-dimensional (1d) gases are especially interesting in that context. They exhibit
very rich dynamics and can be compared to well-studied theoretical models. An
especially interesting aspect is that in many 1d systems a large number of conserved
quantities constrain the evolution and have a profound effect on their relaxation
processes.

In his thesis, Bernhard Rauer investigates relaxation dynamics in degenerate 1d
Bose gases of 87Rb atoms, confined on an atom chip. The thesis studies two main
topics: the first being concerned with the creation of these systems in the laboratory.
In experimental realizations of 1d Bose gases, the temperature of the system needs
to be brought below the minimal energy of transverse excitations to confine
dynamics to the desired single dimension. However, this leads to an exponential
suppression of thermalizing collisions which should force thermalization to
stop. Nevertheless, evaporative cooling, which highly depends on efficient ther-
malization processes, works surprisingly well within the 1d regime and experiments
reach temperatures far below the freeze-out of thermalizing collisions. Why these
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low temperatures can be reached remained a mystery for the last 10 years. Bernhard
Rauer investigates the cooling process in detail and presents a semi-classical
mechanism that describes the cooling as a loss-driven reduction of fluctuations
under a continuous dephasing of the involved phononic excitations. This model is
in good agreement with the experimental findings and finally provides a solution to
the cooling conundrum. Remarkably, the contribution of atomic shot noise that is
expected to become relevant at low temperatures seems to be absent in the
measurements.

The second focus of the thesis lies in the out-of-equilibrium dynamics following
a quench. Extending Poincaré’s recurrence theorem to the quantum domain, any
finite quantum system should at some point return arbitrarily close to its initial state.
In large many-body systems, however, the complexity of the many-body eigen-
states and their spectrum leads to exceedingly long recurrence times. Yet, Bernhard
Rauer was able to observe recurrences of coherence in the post-quench relaxation
dynamics of a pair of 1d Bose gases. The key to the experiment lies in the insight
that one cannot observe the many-body eigenstates directly, but can only observe
much simpler few-body observables. These observables can be linked to an
effective quantum field theory description through the system’s collective modes.
Controlling the dispersion of these collective modes, in this case phonons, allows to
observe recurrences in experimentally accessible quantities. Performing the
post-quench relaxation experiments in a box-shaped potential results in commen-
surate phonon frequencies such that the observation of their rephasing becomes
feasible, even for systems of thousands of particles. Both the recurrence time and its
scaling with the size of the system are well described by a low-energy Luttinger
liquid model. In contrast, the measured damping of the recurrence signal stems
mainly from phonon-phonon scattering processes mediated by terms beyond the
low-energy effective field theory description. The presented experiment sets a
beautiful example of how rephasing can be used to probe many-body processes at
times beyond the initial dephasing dynamics, opening up a new window to study
quasi-particle interactions in such systems. Another remarkable feature of the
experiment is that, even though the system apparently relaxes to a classical (gen-
eralized) Gibbs ensemble, coherence underneath this classical statistical physics
cover leads to a return of the initial state at the point of the recurrence. This
illustrates the intricate connection between the unitary evolution in quantum
many-body systems and the description of their relaxed state in terms of statistical
mechanics.

Vienna, Austria
March 2019

Prof. Dr. Hannes-Jörg Schmiedmayer
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Abstract

Out-of-equilibrium dynamics in complex quantum many-body systems is a vast
topic of research touching many different areas of physics. One of the most versatile
experimental platforms to investigate these effects are ultracold atoms, due to their
flexibility and easy isolation from the environment. In this thesis, we investigate
non-equilibrium dynamics of one-dimensional (1d) Bose gases realized with
ultracold 87Rb atoms on an atom chip. Focusing on phenomena emerging on
timescales beyond the typical dephasing times of excitations, we report on the
observation of recurrences and the finding of a novel cooling mechanism.

A recurrence, the dynamic return of a system to its initial state, can generally not
be observed in large systems as the complexity of their excitation spectra shifts its
appearance to prohibitively long times. Yet, by realizing a commensurate spectrum
in a pair of near-homogeneous 1d Bose gases, recurrences in their low-energy
dynamics can be observed on experimentally accessible timescales. We demon-
strate this by initializing two gases in a phase coherent state by coupling them
through a tunneling barrier before suddenly ramping the coupling to zero. The
subsequent dynamics is monitored by matter-wave interferometry, providing access
to the relative phase field between the gases. After an initial dephasing dynamics,
we observe multiple recurrences of the coherent initial state due to a rephasing
of the underlying excitations. Additionally, analyzing the damping of these recur-
rences, we detect otherwise elusive scattering effects between excitations.

Furthermore, we investigate the dynamics of a 1d Bose gas under a continuous
loss of particles. With thermalization strongly inhibited in these systems, standard
evaporative cooling is rendered ineffective; yet, we still observe a substantial
cooling effect. This cooling is driven by a novel mechanism that relies neither on an
energy selective extraction of particles nor on efficient thermalization channels.
Instead, it proceeds through a loss-induced reduction of density fluctuations and a
continuous dephasing of the involved excitations. For experiments with 1d Bose
gases, this mechanism fills an important gap in the understanding of the state
preparation and the limits of cooling.
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