Human-Computer Interaction Series

Editors-in-chief

John Karat
IBM Thomas J. Watson Research Center, Yorktown Heights, USA

Jean Vanderdonckt
Université catholique de Louvain, Louvain-la-Neuve, Belgium

Editorial Board

Gaëlle Calvary, LIG-University of Grenoble 1, Grenoble, France
John Carroll, School of Information Sciences & Technology, Penn State University, University Park, USA
Gilbert Cockton, Northumbria University, Newcastle, UK
Larry Constantine, University of Madeira, Funchal, Portugal, and Constantine & Lockwood Ltd, Rowley, MA, USA
Steven Feiner, Columbia University, New York, USA
Peter Forbrig, Universität Rostock, Rostock, Germany
Elizabeth Furtado, University of Fortaleza, Fortaleza, Brazil
Hans Gellersen, Lancaster University, Lancaster, UK
Robert Jacob, Tufts University, Medford, USA
Hilary Johnson, University of Bath, Bath, UK
Kumiyo Nakakoji, University of Tokyo, Tokyo, Japan
Philippe Palanque, Université Paul Sabatier, Toulouse, France
Oscar Pastor, University of Valencia, Valencia, Spain
Fabio Pianesi, Bruno Kessler Foundation (FBK), Trento, Italy
Costin Pribeanu, National Institute for Research & Development in Informatics, Bucharest, Romania
Gerd Szwilus, Universität Paderborn, Paderborn, Germany
Manfred Tscheligi, University of Salzburg, Salzburg, Austria
Gerrit van der Veer, University of Twente, Enschede, The Netherlands
Shumin Zhai, IBM Almaden Research Center, San Jose, USA
Thomas Ziegert, SAP Research CEC Darmstadt, Darmstadt, Germany
Human-Computer Interaction is a multidisciplinary field focused on human aspects of the development of computer technology. As computer-based technology becomes increasingly pervasive – not just in developed countries, but worldwide – the need to take a human-centered approach in the design and development of this technology becomes ever more important. For roughly 30 years now, researchers and practitioners in computational and behavioral sciences have worked to identify theory and practice that influences the direction of these technologies, and this diverse work makes up the field of human-computer interaction. Broadly speaking, it includes the study of what technology might be able to do for people and how people might interact with the technology.

In this series, we present work which advances the science and technology of developing systems which are both effective and satisfying for people in a wide variety of contexts. The human-computer interaction series will focus on theoretical perspectives (such as formal approaches drawn from a variety of behavioral sciences), practical approaches (such as the techniques for effectively integrating user needs in system development), and social issues (such as the determinants of utility, usability and acceptability).

For further volumes:
http://www.springer.com/series/6033
Desney S. Tan • Anton Nijholt
Editors

Brain-Computer Interfaces

Applying our Minds to Human-Computer Interaction

Springer
Human-Computer Interaction (HCI) research used to be about the ergonomics of interfaces and, interfaces used to consist of a keyboard, a mouse and whatever could be displayed on the screen of a monitor, that is, the graphical user interface. Nowadays, when we talk about Human-Computer Interaction research, we are talking about multimodal interaction in environments where we research natural human behavior characteristics in general, rather than looking at keyboard and mouse interaction. The environments we live in support us in our activities. Sensor-equipped environments know about us, our activities, our preferences, and about our interactions in the past. This knowledge is obtained from our interaction behavior, behavior that can be observed and interpreted using knowledge that becomes available and that can be fused from cameras, microphones, and position sensors. This allows the environment to not only be reactive, but also proactive, anticipating the user’s activities, needs and preferences.

Less traditional sensors are now being introduced in the Human-Computer Interaction field. The aim is to gather as much information as possible from the human interaction partner and the context, including the interaction history, that can be sensed, interpreted, and stored. This information makes it possible for the environment to improve its performance when supporting its users or inhabitants in their daily activities. These sensors detect our activities, whether we move and how we move and they can be embedded in our clothes and in devices we carry with us. In the past, physiological sensors have been used to evaluate user interfaces. How does the user experience a particular user interface? What can we learn from information about heart rate, blood pressure and skin conductivity about how a user experiences a particular interface? Such information can help in improving the design of an interface. At present we see the introduction of these physiological sensors in devices we carry with us or that are embedded in devices that allow explicit control of computer or computer controlled environments. Hence, this information can be used ‘on-line’, that is, to improve the real-time interaction, rather than ‘off-line’, that is, to improve the quality of the interface. This information gives insight in the user’s affective and cognitive state and it helps us to understand the utterances and activities of the user. It can be used to provide appropriate feedback or to adapt the interface to the user.
Now we see the introduction of sensors that provide us with information that comes directly from the human brain. As in the case of the physiological sensors mentioned above, information from these neuro-physiological sensors can be used to provide more context that helps us to interpret a user’s activities and desires. In addition, brain activity can be controlled by the user and it can be used to control an application. Hence, a user can decide to use his or her brain activity to issue commands. One example is motor imagery, where the user imagines a certain movement in order to, for example, navigate in a virtual or physical environment. On the other hand, an environment can attempt to issue signals from which it can become clear, by looking at the initiated brain activity, what the user is interested in or wants to achieve.

The advances in cognitive neuroscience and brain imaging technologies provide us with the increasing ability to interface directly with activity in the brain. Researchers have begun to use these technologies to build brain-computer interfaces. Originally, these interfaces were meant to allow patients with severe motor disabilities to communicate and to control devices by thought alone. Removing the need for motor movements in computer interfaces is challenging and rewarding, but there is also the potential of brain sensing technologies as input mechanisms that give access to extremely rich information about the state of the user. Having access to this information is valuable to Human-Computer Interaction researchers and opens up at least three distinct areas of research: controlling computers by using thought alone or as a complementary input modality, evaluating systems and interfaces, and building adaptive user interfaces.

Specifically, this book aims to identify and discuss

- Brain-computer interface applications for users with permanent and situational physical disabilities, as well as for able-bodied users; this includes application in domains such as traditional communication and productivity tasks, as well as in games and entertainment computing;
- Sensing technologies and data processing techniques that apply well to the suite of applications in which HCI researchers are interested;
- Techniques for integrating brain activity, whether induced by thought or by performing a task, in the palette of input modalities for (multimodal) Human-Computer Interaction

The Human-Computer Interaction field has matured much in the last several decades. It is now firmly rooted as a field that connects more traditional fields such as computer science, design, and psychology in such a way as to allow us to leverage and synthesize work in these spaces to build technologies that augment our lives in some way. The field has also built up well-defined methodologies for repeating this work across a series of disciplines. Simultaneously, neuroscience continues to advance sufficiently fast and brain-computer interfaces are starting to gain enough traction so that we believe it is a field ripe for collaboration with others such as HCI. In fact, we argue that the specific properties of the two fields make them extremely well suited to cross-fertilization, and that is the intent of this book. That said, we hope that the specific way we have crafted this book will also provide brain-
computer interface researchers with the appropriate background to engage with HCI researchers in their work.

Acknowledgements The editors are grateful to Hendri Hondorp for his help with editing this book.

Redmond/Enschede

Desney Tan
Anton Nijholt
Contents

Part I Overview and Techniques

1 **Brain-Computer Interfaces and Human-Computer Interaction**
 Desney Tan and Anton Nijholt
 1.1 Introduction
 1.1.1 The Evolution of BCIs and the Bridge with Human Computer Interaction
 1.2 Brain Imaging Primer
 1.2.1 Architecture of the Brain
 1.2.2 Geography of Thought
 1.2.3 Measuring Thought with Brain Imaging
 1.2.4 Brain Imaging Technologies
 1.3 Brain Imaging to Directly Control Devices
 1.3.1 Bypassing Physical Movement to Specify Intent
 1.3.2 Learning to Control Brain Signals
 1.3.3 Evaluation of Potential Impact
 1.4 Brain Imaging as an Indirect Communication Channel
 1.4.1 Exploring Brain Imaging for End-User Applications
 1.4.2 Understanding Cognition in the Real World
 1.4.3 Cognitive State as an Evaluation Metric
 1.4.4 Adaptive Interfaces Based on Cognitive State
 1.5 The Rest of the Book
 Appendix
 References

2 **Neural Control Interfaces**
 Melody Moore Jackson and Rudolph Mappus
 2.1 Introduction
 2.2 Background-Biofeedback
 2.3 Control Tasks

ix
2.3.1 Exogenous Control Task Paradigms 23
2.3.2 Endogenous Control Task Paradigms 24
2.4 Cognitive Models of Interaction 25
2.5 Interaction Task Frameworks 26
2.5.1 Selection 27
2.5.2 Text and Quantify 28
2.5.3 Position 28
2.6 Dialog Initiative 28
2.6.1 Synchronous Interfaces 29
2.6.2 Asynchronous Interfaces 29
2.6.3 User Autonomy 29
2.7 Improving BCI Control Interface Usability 30
2.7.1 User Training 31
2.8 Conclusions 31
References .. 31

3 Could Anyone Use a BCI? 35
Brendan Z. Allison and Christa Neuper
3.1 Why BCIs (Sometimes) Don’t Work 35
3.2 Illiteracy in Different BCI Approaches 37
3.2.1 Illiteracy in ERD BCIs 37
3.2.2 Illiteracy in SSVEP BCIs 39
3.2.3 Illiteracy in P300 BCIs 40
3.3 Improving BCI Functionality 42
3.3.1 Improve Selection and/or Classification Algorithms 42
3.3.2 Explore Different Neuroimaging Technologies 43
3.3.3 Apply Error Correction or Reduction 44
3.3.4 Generate Brain Signals that are Easier to Categorize 44
3.3.5 Predicting Illiteracy 46
3.4 Towards Standardized Terms, Definitions, and Measurement Metrics 47
3.4.1 The Relative Severity of Illiteracy 49
3.4.2 (Re) Defining “BCI Illiteracy” 50
3.5 Summary 50
References .. 51

4 Using Rest Class and Control Paradigms for Brain Computer Interfacing 55
Siamac Fazli, Márton Danóczy, Florin Popescu, Benjamin Blankertz, and Klaus-Robert Müller
4.1 Introduction 56
4.1.1 Challenges in BCI 56
4.1.2 Background on Rest Class and Controller Concepts .. 58
4.2 Methods 59
4.2.1 Experimental Paradigm 59
4.2.2 Feature Extraction 60
5 EEG-Based Navigation from a Human Factors Perspective 71
Marieke E. Thurlings, Jan B.F. van Erp, Anne-Marie Brouwer, and
Peter J. Werkhoven
5.1 Introduction 71
5.1.1 Human Navigation Models 72
5.1.2 BCI as a Navigation Device 74
5.1.3 A Short Overview of the Different Types of BCIs 74
5.1.4 Reactive BCIs 75
5.2 BCIs Operating on a Planning Level of Navigation 77
5.2.1 Active Planning BCIs 77
5.2.2 Reactive Planning BCIs 77
5.2.3 Passive Planning BCIs 78
5.3 BCIs Operating on a Steering Level of Navigation 78
5.3.1 Active Steering BCIs 78
5.3.2 Reactive Steering BCIs 79
5.3.3 Passive Steering BCIs 80
5.4 BCIs Operating on a Control Level of Navigation 81
5.5 Discussion 81
5.5.1 Control Level 81
5.5.2 Steering Level 82
5.5.3 Planning Level 83
5.5.4 Sensory Modalities 83
5.6 Conclusion and Recommendations 83
References 84

6 Applications for Brain-Computer Interfaces 89
Melody Moore Jackson and Rudolph Mappus
6.1 Introduction 89
6.2 BCIs for Assistive Technology 90
6.2.1 Communication 90
6.2.2 Environmental Control 93
6.2.3 Mobility 93
6.3 BCIs for Recreation 95
6.3.1 Games 95
6.3.2 Virtual Reality 96
6.3.3 Creative Expression ... 97
6.4 BCIs for Cognitive Diagnostics and Augmented Cognition 97
 6.4.1 Coma Detection ... 98
 6.4.2 Meditation Training ... 98
 6.4.3 Computational User Experience 98
 6.4.4 Visual Image Classification 99
 6.4.5 Attention Monitoring 99
6.5 Rehabilitation and Prosthetics 100
6.6 Conclusions ... 101
References ... 101

7 Direct Neural Control of Anatomically Correct Robotic Hands 105
 Alik S. Widge, Chet T. Moritz, and Yoky Matsuoka
 7.1 Introduction ... 105
 7.2 Cortical Interface Technology and Control Strategies 106
 7.2.1 Interface Technologies 107
 7.2.2 Control Strategies: Population Decoding 107
 7.2.3 Control Strategies: Direct Control 108
 7.3 Neurochip: A Flexible Platform for Direct Control 112
 7.4 Anatomical Prosthetic Design 113
 7.5 The Anatomically Correct Testbed (ACT) Hand 114
 7.5.1 General Overview .. 114
 7.5.2 Anatomically Correct Hands Under Direct Neural Control 115
 7.6 Synthesis: Visions for BCI-Based Prosthetics 116
 References ... 117

8 Functional Near-Infrared Sensing (fNIR) and Environmental
 Control Applications .. 121
 Erin M. Nishimura, Evan D. Rapoport, Peter M. Wubbels, Traci H.
 Downs, and J. Hunter Downs III
 8.1 Near Infrared Sensing Technology 121
 8.1.1 Physiological Monitoring 122
 8.1.2 Functional Brain Imaging 123
 8.2 The OTIS System .. 123
 8.3 Basic BCI Applications ... 125
 8.3.1 Hemodynamic Response Detection 125
 8.3.2 Yes/No Response ... 125
 8.4 Environmental Control with fNIR 126
 8.4.1 Software Framework for Control Applications 126
 8.4.2 Electronics/Appliance Control 128
 8.4.3 Dolphin Trainer ... 128
 8.4.4 Dolphin Interface for Communication/Control 129
 8.4.5 Brain Painting for Creative Expression 129
 8.5 Conclusion ... 131
 References ... 131
9 Cortically-Coupled Computer Vision .. 133
Paul Sajda, Eric Pohlmeier, Jun Wang, Barbara Hanna, Lucas C. Parra,
and Shih-Fu Chang
9.1 Introduction ... 134
9.2 The EEG Interest Score .. 136
9.3 C3Vision for Remote Sensing 137
9.4 C3Vision for Image Retrieval 142
9.5 Conclusions ... 146
References .. 147

10 Brain-Computer Interfacing and Games 149
Danny Plass-Oude Bos, Boris Reuderink, Bram van de Laar, Hayrettin
Gürkök, Christian Mühl, Mannes Poel, Anton Nijholt, and Dirk Heylen
10.1 Introduction ... 150
10.2 The State of the Art ... 152
10.3 Human-Computer Interaction for BCI 155
10.3.1 Learnability and Memorability 156
10.3.2 Efficiency and Effectiveness 157
10.3.3 Error Handling ... 157
10.3.4 Satisfaction ... 158
10.4 BCI for Controlling and Adapting Games 159
10.4.1 User Experience .. 159
10.4.2 Passive BCI and Affect-Based Game Adaptation 160
10.4.3 BCI as Game Controller 164
10.4.4 Intuitive BCI .. 167
10.4.5 Multimodal Signals, or Artifacts? 169
10.5 Conclusions ... 172
References .. 173

Part III Brain Sensing in Adaptive User Interfaces

11 Enhancing Human-Computer Interaction with Input from Active
and Passive Brain-Computer Interfaces 181
Thorsten O. Zander, Christian Kothe, Sabine Jatzev, and Matti Gaertner
11.1 Accessing and Utilizing User State for Human-Computer
Interaction .. 182
11.1.1 Utilizing User State for Human-Computer Interaction . 182
11.1.2 Accessing User State with Psycho-Physiological Measures 183
11.1.3 Covert Aspects of User State 183
11.2 Classical BCIs from an HCI Viewpoint 184
11.3 Generalized Notions of BCIs 184
11.3.1 BCI Categories ... 185
11.3.2 Passive BCIs ... 185
11.4 Refining the BCI Training Sequence 187
11.5 An Active and Hybrid BCI: Combining Eye Gaze Input with BCI
for Touchless Interaction ... 189
11.6 A Passive BCI: Automated Error Detection to Enhance Human-Computer Interaction via Secondary Input
11.6.1 Experimental Design
11.6.2 Offline Experiment
11.6.3 Online Experiment
11.6.4 Discussion
11.7 Conclusion
References

12 Brain-Based Indices for User System Symbiosis
Jan B.F. van Erp, Hans J.A. Veltman, and Marc Grootjen
12.1 Introduction
12.1.1 Evolution of Human Computer Interaction
12.1.2 Information Models for Future Symbiosis
12.1.3 This Chapter
12.2 Brain-Based Indices for Adaptive Interfaces
12.2.1 Brain-Based Workload Indices
12.2.2 Brain-Based Vigilance and Drowsiness Indices
12.2.3 Discussion on Brain-Based Indices
12.3 Input for an Operator Model
12.3.1 Relation Between Workload, Task Demand and Performance
12.3.2 Operator State Regulation, Workload and Performance
12.4 Discussion
12.4.1 Sense and Non-sense of Brain-Based Adaptation
12.4.2 Opportunities for Brain-Based Indices in User-System Symbiosis
References

13 From Brain Signals to Adaptive Interfaces: Using fNIRS in HCI
Audrey Girouard, Erin Treacy Solovey, Leanne M. Hirshfield, Evan M. Peck, Krysta Chauncey, Angelo Sassaroli, Sergio Fantini, and Robert J.K. Jacob
13.1 Introduction
13.2 fNIRS Background
13.3 fNIRS Considerations for HCI Research
13.3.1 Head Movement
13.3.2 Facial Movement
13.3.3 Ambient Light
13.3.4 Ambient Noise
13.3.5 Respiration and Heartbeat
13.3.6 Muscle Movement
13.3.7 Slow Hemodynamic Response
13.3.8 Summary of Guidelines and Considerations
13.4 Measuring Mental Workload
Contributors

Brendan Z. Allison Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Krenngasse 37/III, 8010 Graz, Austria, allison@tugraz.at

Nima Bigdely-Shamlo Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA

Benjamin Blankertz Berlin Institute of Technology, Franklinstr. 28/29, Berlin, Germany
Fraunhofer FIRST, Kekuléstr. 7, Berlin, Germany, blanker@cs.tu-berlin.de

Anne-Marie Brouwer TNO Human Factors, P.O. Box 23, 3769DE Soesterberg, The Netherlands, anne-marie.brouwer@tno.nl

Shih-Fu Chang Department of Electrical Engineering, Columbia University, New York, NY, USA, sfchang@ee.columbia.edu

Krysta Chauncey Computer Science Department, Tufts University, Medford, MA 02155, USA, krysta.chauncey@tufts.edu

Márton Danóczy Berlin Institute of Technology, Franklinstr. 28/29, Berlin, Germany, marton@cs.tu-berlin.de

Arnaud Delorme Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
Université de Toulouse, UPS, Centre de Recherche Cerveau et Cognition, Toulouse, France
CNRS, CerCo, Toulouse, France, arno@ucsd.edu

J. Hunter Downs Archinoetics LLC, 700 Bishop St, Ste 2000, Honolulu, HI 96817, USA, hunter@archinoetics.com

Traci H. Downs Archinoetics LLC, 700 Bishop St, Ste 2000, Honolulu, HI 96817, USA, traci@archinoetics.com
Jan B.F. Erp TNO Human Factors, P.O. Box 23, 3769DE Soesterberg, The Netherlands, jan.vanerp@tno.nl

Sergio Fantini Biomedical Engineering Department, Tufts University, Medford, MA 02155, USA, sergio.fantini@tufts.edu

Siamac Fazli Berlin Institute of Technology, Franklinstr. 28/29, Berlin, Germany, fazli@cs.tu-berlin.de

Matti Gaertner Team PhyPA, TU Berlin, Berlin, Germany
Department of Psychology and Ergonomics, Chair for Human-Machine Systems, Berlin Institute of Technology, Berlin, Germany

Audrey Girouard Computer Science Department, Tufts University, Medford, MA 02155, USA, audrey.girouard@tufts.edu

Marc Grootjen EagleScience, Lommerlustlaan 59, 2012BZ Haarlem, The Netherlands, marc@eaglescience.nl

Hayrettin Gürkok Human Media Interaction, University of Twente, Faculty of EEMCS, P.O. Box 217, 7500 AE, Enschede, The Netherlands, h.gurkok@ewi.utwente.nl

Barbara Hanna Neumatters, LLC, New York, NY, USA, bhanna@neumatters.com

Dirk Heylen Human Media Interaction, University of Twente, Faculty of EEMCS, P.O. Box 217, 7500 AE, Enschede, The Netherlands, d.k.j.heylen@ewi.utwente.nl

Leanne M. Hirshfield Computer Science Department, Tufts University, Medford, MA 02155, USA, leanne.hirshfield@tufts.edu

Robert J.K. Jacob Computer Science Department, Tufts University, Medford, MA 02155, USA, robert.jacob@tufts.edu

Sabine Jatzev Team PhyPA, TU Berlin, Berlin, Germany
Department of Psychology and Ergonomics, Chair for Human-Machine Systems, Berlin Institute of Technology, Berlin, Germany

Christian Kothe Team PhyPA, TU Berlin, Berlin, Germany
Department of Psychology and Ergonomics, Chair Human-Machine Systems, Berlin Institute of Technology, Berlin, Germany, christiankothe@googlemail.com

Bram van de Laar Human Media Interaction, University of Twente, Faculty of EEMCS, P.O. Box 217, 7500 AE, Enschede, The Netherlands, b.l.a.vandelaar@ewi.utwente.nl

Scott Makeig Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA, smakeig@ucsd.edu
Rudolph Mappus BrainLab, School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA, cmappus@gatech.edu

Yoky Matsuoka Department of Computer Science and Engineering, University of Washington, Washington, USA, yoky@u.washington.edu

Melody Moore Jackson BrainLab, School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA, melody@cc.gatech.edu

Chet T. Moritz Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Washington, USA, ctmoritz@u.washington.edu

Christian Mühl Human Media Interaction, University of Twente, Faculty of EEMCS, P.O. Box 217, 7500 AE, Enschede, The Netherlands, c.muehl@ewi.utwente.nl

Klaus-Robert Müller Berlin Institute of Technology, Franklinstr. 28/29, Berlin, Germany, krm@cs.tu-berlin.de

Christa Neuper Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Krenngasse 37/III, 8010 Graz, Austria
Department of Psychology, University of Graz, Universitätsplatz 2/III, 8010 Graz, Austria, christa.neuper@uni-graz.at

Anton Nijholt Human Media Interaction, University of Twente, Faculty of EEMCS, P.O. Box 217, 7500 AE, Enschede, The Netherlands, a.nijholt@ewi.utwente.nl

Erin M. Nishimura Archinoetics LLC, 700 Bishop St, Ste 2000, Honolulu, HI 96817, USA, erin@archinoetics.com

Robert Oostenveld Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands, r.oostenveld@donders.ru.nl

Lucas C. Parra City College of New York, New York, NY, USA, parra@ccny.cuny.edu

Evan M. Peck Computer Science Department, Tufts University, Medford, MA 02155, USA, evan.peck@tufts.edu

Danny Plass-Oude Bos Human Media Interaction, University of Twente, Faculty of EEMCS, P.O. Box 217, 7500 AE, Enschede, The Netherlands, d.plass@ewi.utwente.nl

Mannes Poel Human Media Interaction, University of Twente, Faculty of EEMCS, P.O. Box 217, 7500 AE, Enschede, The Netherlands, m.poel@ewi.utwente.nl
xx Contributors

Eric Pohlmeyer Department of Biomedical Engineering, Columbia University, New York, NY, USA, ep2473@columbia.edu

Florin Popescu Fraunhofer FIRST, Kekuléstr. 7, Berlin, Germany, florin.popescu@first.fraunhofer.de

Evan D. Rapoport Archinoetics LLC, 700 Bishop St, Ste 2000, Honolulu, HI 96817, USA, evan@archinoetics.com

Boris Reuderink Human Media Interaction, University of Twente, Faculty of EEMCS, P.O. Box 217, 7500 AE, Enschede, The Netherlands, b.reuderink@ewi.utwente.nl

Paul Sajda Department of Biomedical Engineering, Columbia University, New York, NY, USA, psajda@columbia.edu

Angelo Sassaroli Biomedical Engineering Department, Tufts University, Medford, MA 02155, USA, angelo.sassaroli@tufts.edu

Gerwin Schalk Wadsworth Center, New York State Dept. of Health, Albany, USA, schalk@wadsworth.org

Erin Treacy Solovey Computer Science Department, Tufts University, Medford, MA 02155, USA, erin.solovey@tufts.edu

Desney Tan Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA, desney@microsoft.com

Marieke E. Thurlings TNO Human Factors, P.O. Box 23, 3769DE Soesterberg, The Netherlands
Utrecht University, Utrecht, The Netherlands, marieke.thurlings@tno.nl

Andrey Vankov Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA, avankow@ucsd.edu

Hans (J.A.) Veltman TNO Human Factors, P.O. Box 23, 3769DE Soesterberg, The Netherlands, hans.veltman@tno.nl

Jun Wang Department of Electrical Engineering, Columbia University, New York, NY, USA, jwang@ee.columbia.edu

Peter J. Werkhoven TNO Human Factors, P.O. Box 23, 3769DE Soesterberg, The Netherlands
Utrecht University, Utrecht, The Netherlands, peter.werkhoven@tno.nl

Alik S. Widge Department of Psychiatry, University of Washington, Washington, USA, alikw@u.washington.edu

Adam Wilson Department of Neurosurgery, University of Cincinnati, Cincinnati, USA, wilso3jn@uc.edu
Contributors

Peter M. Wubbels Archinoetics LLC, 700 Bishop St, Ste 2000, Honolulu, HI 96817, USA

Thorsten O. Zander Team PhyPA, TU Berlin, Berlin, Germany
Department of Psychology and Ergonomics, Chair for Human-Machine Systems, Berlin Institute of Technology, Berlin, Germany,
thorsten.zander@mms.tu-berlin.de
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT</td>
<td>Alpha Attenuation Test</td>
</tr>
<tr>
<td>ACT</td>
<td>Anatomically Correct Testbed</td>
</tr>
<tr>
<td>A-LOC</td>
<td>Almost Loss of Consciousness</td>
</tr>
<tr>
<td>ALS</td>
<td>Amyotrophic Lateral Sclerosis</td>
</tr>
<tr>
<td>AP</td>
<td>Average Precision</td>
</tr>
<tr>
<td>aPFC</td>
<td>Anterior PreFrontal Cortex</td>
</tr>
<tr>
<td>BCI</td>
<td>Brain-Computer Interaction</td>
</tr>
<tr>
<td>BIRT</td>
<td>Brain-Interface Run-Time</td>
</tr>
<tr>
<td>BMI</td>
<td>Brain-Machine Interaction</td>
</tr>
<tr>
<td>CAUS</td>
<td>Covert Aspects of User State</td>
</tr>
<tr>
<td>CBF</td>
<td>Cerebral Blood Flow</td>
</tr>
<tr>
<td>CI</td>
<td>Control Interface</td>
</tr>
<tr>
<td>CNV</td>
<td>Contingent Negative Variation</td>
</tr>
<tr>
<td>CSP</td>
<td>Common Spatial Patterns</td>
</tr>
<tr>
<td>DOF</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>ECG</td>
<td>ElectroCardioGram</td>
</tr>
<tr>
<td>ECoG</td>
<td>ElectroCorticoGraphic</td>
</tr>
<tr>
<td>EEG</td>
<td>ElectroEncephaloGraphy</td>
</tr>
<tr>
<td>EMG</td>
<td>ElectroMyoGram</td>
</tr>
<tr>
<td>EOG</td>
<td>ElectroOculoGram</td>
</tr>
<tr>
<td>ERD</td>
<td>Event Related Desynchronization</td>
</tr>
<tr>
<td>ERN</td>
<td>Error Related Negativity</td>
</tr>
<tr>
<td>ERP</td>
<td>Event Related Potentials</td>
</tr>
<tr>
<td>ERS</td>
<td>Event-Related Synchronization</td>
</tr>
<tr>
<td>FES</td>
<td>Functional Electrical Stimulation</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>FN</td>
<td>False Negative rate</td>
</tr>
<tr>
<td>fNIR</td>
<td>functional Near-InfraRed Sensing</td>
</tr>
<tr>
<td>fNIRS</td>
<td>functional Near-InfraRed Spectroscopy</td>
</tr>
<tr>
<td>FP</td>
<td>False Positive rate</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GEQ</td>
<td>Game Experience Questionnaire</td>
</tr>
<tr>
<td>G-LOC</td>
<td>Gravity-induced Loss of Consciousness</td>
</tr>
<tr>
<td>GOMS</td>
<td>Goals, Operators, Methods and Selection rules</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HCI</td>
<td>Human-Computer Interaction</td>
</tr>
<tr>
<td>HSWM</td>
<td>High Spatial Working Memory</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Component Analysis</td>
</tr>
<tr>
<td>ITR</td>
<td>Information Transfer Rate</td>
</tr>
<tr>
<td>LDA</td>
<td>Linear Discriminant Analysis</td>
</tr>
<tr>
<td>LRP</td>
<td>Lateralized Readiness Potential</td>
</tr>
<tr>
<td>LSWM</td>
<td>Low Spatial Working Memory</td>
</tr>
<tr>
<td>MEG</td>
<td>MagnetoEncephaloGraphy</td>
</tr>
<tr>
<td>MMN</td>
<td>MisMatch Negativity</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-InfraRed</td>
</tr>
<tr>
<td>NPC</td>
<td>Non-Player Character</td>
</tr>
<tr>
<td>OOI</td>
<td>Objects of Interest</td>
</tr>
<tr>
<td>PCT</td>
<td>Perceptual Control Theory</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PFC</td>
<td>PreFrontal Cortex</td>
</tr>
<tr>
<td>PSoC</td>
<td>Programmable System-on-a-Chip</td>
</tr>
<tr>
<td>QDA</td>
<td>Quadratic Discriminant Analysis</td>
</tr>
<tr>
<td>RJB</td>
<td>Right Justified Box</td>
</tr>
<tr>
<td>RP</td>
<td>Readiness Potential</td>
</tr>
<tr>
<td>RSVP</td>
<td>Rapid Serial Visual Presentation</td>
</tr>
<tr>
<td>SCP</td>
<td>Slow Cortical Potential</td>
</tr>
<tr>
<td>SMR</td>
<td>SensoriMotor Rhythm</td>
</tr>
<tr>
<td>SPECT</td>
<td>Single Photon Emission Computed Tomography</td>
</tr>
<tr>
<td>SSEP</td>
<td>Somato Sensory Evoked Potential</td>
</tr>
<tr>
<td>SSVEP</td>
<td>Steady-State Visual Evoked Potentials</td>
</tr>
<tr>
<td>SWDA</td>
<td>Stepwise Discriminant Analysis</td>
</tr>
<tr>
<td>TLS</td>
<td>Total Locked-in Syndrome</td>
</tr>
<tr>
<td>TP</td>
<td>True Positive rate</td>
</tr>
<tr>
<td>TTD</td>
<td>Thought Translation Device</td>
</tr>
<tr>
<td>TTI</td>
<td>Target to Target Interval</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface</td>
</tr>
<tr>
<td>VEP</td>
<td>Visually Evoked Potential</td>
</tr>
<tr>
<td>WM</td>
<td>Working Memory</td>
</tr>
</tbody>
</table>