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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 
transfer in control engineering. The rapid development of control technology has 
an impact on all areas of the control discipline. New theory, new controllers, 
actuators, sensors, new industrial processes, computer methods, new applications, 
new philosophies…, new challenges. Much of this development work resides in 
industrial reports, feasibility study papers and the reports of advanced collaborative 
projects. The series offers an opportunity for researchers to present an extended 
exposition of such new work in all aspects of industrial control for wider and rapid 
dissemination. 

Internationally, there is much concern about climate change, global warming, 
and environmental pollution. Two of the major issues are the world’s reliance on 
fossil fuels (coal, oil, and gas) for energy production and the bludgeoning demand 
for energy as more nations become economically developed and the world 
becomes increasingly urbanized. If the technological challenges can be overcome, 
the use of nuclear fusion reactors could provide a sustainable and clean way of 
meeting the ever-increasing demand for energy in the long term. As evidenced by 
this monograph, it is inspiring to learn that control engineers are already deeply 
involved in the international experiments designed to explore the potential of this 
advanced energy production technology. The tokamak design of nuclear fusion 
reactor is at the centre of a new research programme, the International 
Thermonuclear Experimental Reactor (ITER) project and in this Advances in 
Industrial Control monograph, Marco Ariola and Alfredo Pironti explore the 
problems of tokamak plasma control. 

Despite the esoteric technology of tokamak nuclear fusion reactors, there is 
much that is familiar to the process control or industrial control engineer in this 
volume; for example, these nuclear fusion reactors have an operational profile that 
can be divided into the stages of start-up, steady-state and shut-down. The steady-
state operational phase is characterized by high-performance control to achieve 
stable, efficient, and optimized operation whilst meeting the demanding objective 
of accurate spatial plasma distribution. A key preliminary in any process control 
project is a study of the process and the authors provide a concise and clear 
introduction to the basics of plasma physics and models in Part I of the monograph; 



x Series Editors’ Foreword 

this part is supported by two useful appendices on some of the mathematical tools 
used and the physical units of plasma physics. State-space models, state observers, 
H∞ control, and process simulations are some of the familiar techniques used by 
the authors to meet the demanding spatial control specifications for these 
processes; however, the research reported in the monograph is more that just 
simulation studies and proposals for possible future hypothetical controllers, for 
the authors have worked with some of the world’s leading existing tokamak 
facilities. Chapter 5, 8, and 9 respectively, give practical results of implementations 
of their control schemes on the FTU Tokamak (Italy), the TCV Tokamak 
(Switzerland), and the JET Tokamak (United Kingdom). Additionally, the authors 
present simulation results of their ideas for the control of the new tokamak 
proposed for the ITER project. 

In conclusion, being very aware that most control engineers will not be 
conversant with the complexities of tokamak nuclear fusion reactor control, the 
authors have taken special care to give a useful introduction to the background of 
nuclear fusion, the science of plasma physics and appropriate models in the first 
part of the monograph (Chapters 1 to 3). This introduction is followed by six 
chapters (4 to 9) of control studies. In Chapter 4, the generic control problem is 
established and then five case study chapters follow. These later chapters marry 
different aspects of the control problem with actual practical results from the 
different tokamak installations mentioned above. This well structured and staged 
presentation should make this important and fascinating application accessible to a 
wide range of readers including process and industrial engineers, academic 
researchers and postgraduate students in the control and power disciplines. 

Industrial Control Centre M.J. Grimble 
Glasgow M.A. Johnson 
Scotland, UK 
2008 



Preface

This book offers a thorough coverage of the magnetic control of a plasma in
a tokamak. A plasma is a gas in which an important fraction of the particles
is ionized, so that the electrons and ions are separately free; tokamaks are
devices constructed in the shape of a torus (or doughnut), in which the plasma
is confined by means of magnetic fields. Tokamaks have been proved to be the
most promising approach to obtaining energy production from nuclear fusion.
For nuclear fusion to happen in a plasma, it is necessary to heat the plasma
to a sufficiently high temperature of around 100 million degrees centigrade:
this motivates the need for devices in which the plasma is restricted to a finite
spatial region without any physical boundary. In a tokamak the confinement
is obtained through balancing the expansion pressure in the plasma with the
forces exerted by a magnetic field produced by currents flowing in a number
of circuits surrounding the plasma. The equilibrium between these forces is
such that the plasma assumes the geometrical form of a ring inside the vacuum
chamber of the tokamak. The importance of tokamaks for the future of nuclear
fusion is demonstrated by the decision to build a new experimental facility,
called ITER, as a joint effort by most of the industrialized countries in the
world. ITER, whose cost is estimated at about 10 billion euros, will be in
operation in 2016, and it is expected to open the way to the commercial
exploitation of nuclear fusion.

The magnetic control system is a feedback system, sometimes divided into
separate sub-systems, that has the aim of guaranteeing that the plasma equi-
librium inside the tokamak is maintained with a prescribed position and shape
of the plasma ring. The design of this control system is the main topic of this
book. Historically the first problem that was faced was the vertical stabi-
lization of the plasma. Indeed, physical studies demonstrated that the effi-
ciency of the confinement configuration was improved if the plasma exhibited
a vertically elongated shape. Unfortunately, with this elongated configura-
tion the equilibrium turned out to be unstable. This problem was tackled
using a simple SISO (single-input–single-output) loop, typically with a PID
(proportional-integral-derivative) controller whose gains were experimentally
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tuned. Following this, simple stabilization of the plasma was no longer enough
for the experimental activities, and the problem of controlling the overall
shape of the plasma gained more and more importance. As a matter of fact,
at present, for most tokamak devices there are programmes aimed at improv-
ing the performance of the magnetic control systems. This improvement is
being achieved with a substantial paradigm shift, from an empirical design
approach to a more formal, model-based design approach.

Models deriving from a description of the interaction between the plasma
and the circuits are described in terms of a set of nonlinear partial differential
equations. The main modelling problem is then that of introducing physical
simplifying assumptions and of using approximate numerical methods to ob-
tain a model detailed enough to catch the principal phenomena, but simple
enough to make it useful for controller design. Even after these simplifying
assumptions, controller design remains a nontrivial problem, mainly for the
following reasons:

• the models are typically of high order (more than 100 state variables);
• the model is multi-input–multi-output with a strong coupling between the

channels;
• the controller should exhibit stability and performance robustness; indeed

it is usually designed on the basis of a nominal plasma equilibrium con-
figuration, but it is expected to perform well during an entire phase of a
discharge when some plasma parameters change;

• the control variables are subject to physical limits due to the actuator
constraints: voltage, current and power limits should therefore be taken
into account in the design phase.

Along with the presentation of various controller schemes, both for plasma
vertical stabilization, and for plasma shape, the book gives insight to the basic
principles of nuclear fusion and tokamak operation, and a detailed derivation
of the linearized model used for the design. In some cases, the controllers
described have been implemented on existing tokamaks, and are now in oper-
ation. Some of these control schemes can be proposed for use with the exper-
imental tokamak ITER.

The book is divided into two parts: Plasma Modelling and Plasma Control.
Then it is organized into nine chapters plus two appendices.

1. Introduction. This chapter gives some basic notions about nuclear fusion
and plasmas. Then a description of tokamaks and of the main magnetic
control problems is given.

2. Plasma Modelling for Magnetic Control. In this chapter a description of
the plasma model used for the controller design is given. The main sim-
plifying assumptions are illustrated and the steps to derive the model are
discussed. An overview of the mathematical tools used in this chapter can
be found in the first of the two appendices.

3. The Plasma Boundary and its Identification. In this chapter the most
common magnetic sensors used in magnetic control are described. Then
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the plasma shape identification problem is discussed and an algorithm
commonly used to solve this problem is presented.

4. The Plasma Magnetic Control Problem. In this chapter the problem of
controlling the plasma current, position and shape is discussed. All as-
pects are covered: the choice of geometrical variables to control; the for-
mulation of the control problem in terms of desired performance and plant
limits; the presentation and comparison of the most commonly used con-
trol schemes.

5. Plasma Position and Current Control at FTU. This chapter describes
the design of a current and position controller for the FTU/indexFTU
tokamak, a tokamak in operation in Italy. This design is presented as a
first example since in this case the problem is made much easier by the
fact that the plasma is not vertically unstable.

6. Plasma Vertical Stabilization. This chapter focuses on the most basic con-
trol problem in a tokamak: the vertical stabilization problem. It is shown
how it is possible to separate this problem from the problem of controlling
the overall shape, and two solutions are presented.

7. Plasma Shape Control for ITER. In this chapter the plasma shape control
for the ITER tokamak is discussed. A possible solution is presented; this
solution exploits the fact that the vertical position control and the plasma
current and shape control can be performed on different time scales.

8. Plasma Shape Control at TCV. This chapter presents the design of a high-
order multivariable compensator for plasma current, position and shape
control in TCV, a tokamak in operation in Switzerland. The problem is
formulated in the H∞ framework.

9. Plasma Shape Control at JET. This chapter describes the design of a new
plasma shape controller implemented on the JET tokamak, the world’s
largest tokamak. From a control point of view, the design is a case of
optimal output regulation for a non-right invertible plant, i.e. for a plant
with fewer control inputs than controlled outputs.

10. Appendices. The appendices cover some mathematical notions that do
not typically belong to the background of control engineers, along with a
tutorial describing the various measurement units used in plasma physics.

This work would not have been possible without the help of many people.
First of all we have to thank Professor Giuseppe Ambrosino, who initiated us
into automatic control and introduced us to the problem of plasma control in
tokamaks. Without his support and most of all his constant advice, we would
never have gained the experience and the knowledge that led us to write this
monograph. Thanks, Peppe!

Then we would like to thank Professor Raffaele Albanese, Professor Vin-
cenzo Coccorese, and all the CREATE team: we are really proud to be part
of it.

Our sincere gratitude goes to all the people working at the sites where we
gained our experience on operating tokamaks. In particular:
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• Dr Flavio Crisanti of ENEA of Frascati and all the FTU team for the work
done at FTU;

• Dr Jonathan Lister of the CRPP of Lausanne and the TCV team for the
work done at TCV;

• Dr Filippo Sartori of UKAEA and the JET team for all the experiments
we carried out at JET;

• Dr Alfredo Portone of EFDA, with whom we have been collaborating for
more than 15 years on ITER magnetic control.

Finally, we really have to thank our families and loved ones for their sup-
port during this task: very often in recent months we have taken time away
from them because of this book.

Napoli, Marco Ariola
March 2008 Alfredo Pironti
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