The main motivation in publishing this collection of papers is to present the most recent results concerning robot motion and control to the robotics community. Twenty five original works have been selected out of 53 papers presented at the Fourth International Workshop on Robot Motion and Control (RoMoCo’04) which was held in Puszczykowo, Poland, during four days from June 17 to 20, 2004. This Workshop was the fourth in a series of RoMoCo Workshops held so far (the previous ones were held in 1999, 2001, and 2002). It is an internationally recognized event, technically co-sponsored by the IEEE Robotics and Automation Society and the Polish Section of the IEEE Robotics and Automation Society Chapter. Its 2004 edition was also technically supported by the thematic network CLAWAR (Climbing and Walking Robots). The Workshop was organized by the Institute of Control and Systems Engineering of the Poznań University of Technology in Poland.

During the Workshop the members of the International Program Committee suggested to select the most interesting papers presented at RoMoCo’04. The authors were asked to prepare extended versions of their papers using only up to 25% of the original content published in the Proceedings of the Fourth International Workshop on Robot Motion and Control printed by the Poznań University Press and distributed during RoMoCo’04. The selected papers went through a rigorous review procedure and most of them got two reviews. Based on the reviewers’ comments most of the papers were corrected and finally accepted for publication in the Lecture Notes in Control and Information Sciences series.

The interest in robot motion and control has remarkably augmented over recent years. Novel solutions of complex mechanical systems such as industrial robots, mobile robot, flying robots and their applications are the evidence of a significant progress in the area of robotics. It should also be noted that among the objectives of running the Workshop was to build a bridge between previous the Eastern European countries and the Western countries. It is one of the reasons why RoMoCo’04 took place in Poland. There is a lot of appreciation of the robotics field in Poland now and many researchers visiting Poland have noticed this fact recently.

To our best knowledge there are no books available at present which refer to the most recent advances in robot motion and control and this book fills the
gap. There are standard text books concerning this subject which are available at the market which are four years old. The dynamically developing field of robot control, in particular control of nonholonomic systems and legged robots as well as trajectory planning for these systems is not covered in any text book published so far. Therefore we strongly believe that this proposition is unique and no similar collection of papers has been published before. A careful review procedure resulted in the selection of high quality papers written by internationally recognized scientists as well as young talented researchers (some of them Ph.D. students) from different countries. Our goal was to encourage young scientists to contribute to this book showing that many new research groups are being set up throughout the world. This book should strengthen the relationship between the new and old members of the European Community.

The members of the International Program Committee have worked in the area of robotics and automation for many years. They have experience in various fields of robotics and basically have worked on control theory with applications to robotics for many years. They took active part in the reviewing procedure during last months when this book was being built up.

This book consists of five parts. The first part deals with control and trajectory planning of nonholonomic systems. It is the longest one and contains five papers. The second part is devoted to control of mechanical systems. Here by mechanical systems we mean industrial robots, flexible link robots, and flying robots. In this part six papers were selected. The third part addresses climbing and walking robots, which can also be considered mechanical systems. However, climbing and walking are addressed explicitly, which is reflected in the part’s title. Four papers constitute this part. Part four is dedicated to important ideas originating in the area of mobile robot research. Of the five papers contained here, three deal with multiagent systems and two with localization methods. Finally, the last part consisting of five papers is dedicated to application of robotic systems.

The book is addressed to Ph.D. students of robotics and automation, informatics, mechatronics and production engineering systems. It will also be of interest to scientists and researchers working in the above fields.

I would like to take this opportunity to thank all the reviewers involved in the reviewing process. I am very grateful to Mr K. Romanowski for this suggestions concerning improvement of English. I am also grateful to Dr W. Wróblewski for his help and patience and typesetting of this book.

Mr O. Jackson and Mr A. Doyle, our editors at Springer, are gratefully acknowledged for their encouragement in pursuing this project.

Poznań, Poland
January, 2006

Krzysztof Kozłowski
Contents

Part I Control and Trajectory Planning of Nonholonomic Systems

1 Trajectory Tracking for Nonholonomic Vehicles
Pascal Morin, Claude Samson ... 3
1.1 Introduction .. 3
1.2 Modeling of Vehicles’ Kinematics 4
 1.2.1 Kinematics w.r.t. an Inertial Frame 4
 1.2.2 Kinematics w.r.t. a Moving Frame 6
 1.2.3 Tracking Error Models 7
 1.2.4 Linearized Systems 9
 1.2.5 Transformations into Chained Systems 9
1.3 An Overview of Trajectory Tracking Problems 10
 1.3.1 Output Feedback Control 11
 1.3.2 Stabilization of Specific Trajectories 13
 1.3.3 Practical Stabilization 17
1.4 Conclusion .. 20
References ... 21

2 Posture Stabilization of a Unicycle Mobile Robot — Two Control Approaches
Krzysztof Kozlowski, Jarosław Majchrzak, Maciej Michalek,
Dariusz Pazderski .. 25
2.1 Introduction .. 25
2.2 Kinematics ... 26
2.3 Posture Stabilization – Two Control Approaches 27
 2.3.1 Oscillatory-based Time-varying Control Law 27
 2.3.2 Control Law Based on Vector Field Orientation Approach 37
2.4 Control Limitations .. 44
2.5 Simulation Results ... 45
 2.5.1 TVO Stabilizer .. 45
 2.5.2 VFO Controller .. 49
3 Trajectory Tracking Control for Nonholonomic Mobile Manipulators

Alicja Mazur, Krzysztof Arent

3.1 Introduction ... 55
3.2 Nonholonomic Constraints 56
 3.2.1 Kinematics of the Nonholonomic Mobile Platform of
 (2,0) Class ... 56
 3.2.2 Kinematics of the Nonholonomic 3-pendulum 57
3.3 Mathematical Model of a Nonholonomic Mobile Manipulator 58
 3.3.1 Dynamics of a Mobile Manipulator with a Nonholonomic
 Platform .. 58
 3.3.2 Dynamics of a Doubly Nonholonomic Mobile Manipulator 59
3.4 Control Problem Statement 60
3.5 Kinematic Control Algorithms 60
 3.5.1 Kinematic Controller for the Mobile Platform - Samson
 & Ait-Abderrahim algorithm 60
 3.5.2 Kinematic Controller for the 3-pendulum - Jiang &
 Nijmeijer Algorithm 62
3.6 Dynamic Control Algorithms 64
 3.6.1 Dynamic Controller for a Mobile Manipulator with
 a Nonholonomic Platform 64
 3.6.2 Dynamic Controller for a Doubly Nonholonomic Mobile
 Manipulator ... 66
3.7 Simulation Study .. 67
3.8 Conclusions .. 68
References .. 70

4 Bases for Local Nonholonomic Motion Planning

Ignacy Dulęba, Pawel Ludwików 73
4.1 Introduction .. 73
4.2 Lie Algebraic Concepts and the gCBHD Formula for Driftless
 Nonholonomic Systems 74
4.3 Evaluation of Bases in Space of Controls 76
4.4 Evaluation of Vector Fields Constrained with the Jacobi Identity . 78
4.5 Conclusions .. 80
References .. 82

5 On Drift Neutralization of Stratified Systems

István Harmati, Bálint Kiss, Emese Szádeczky-Kardoss 85
5.1 Introduction .. 85
5.2 The Robotic Rowboat Model 86
5.3 Background Material .. 87
5.4 Drift Neutralization in Stratified Framework 89
5.4.1 MPA with Drift Neutralization for Noninvolutive SKSs ... 89
5.4.2 Simulation Results on a Robotic Rowboat 92
5.5 Exact Reaching along Smooth Curves in the xy Plane 93
5.6 Conclusions ... 95
References .. 95

Part II Control and Mechanical Systems

6 Novel Adaptive Control of Partially Modeled Dynamic Systems
Joszef K. Tar, Imre J. Rudas, Agnes Szeghegyi, Krzysztof Kozłowski 99
6.1 Introduction ... 99
6.2 Formulation of the Control Task 101
6.3 Description of the System to Be Controlled 103
6.4 Simulation Results 104
6.5 Conclusions ... 105
6.6 Acknowledgment ... 109
References .. 109

7 Example Applications of Fuzzy Reasoning and Neural Networks in Robot Control
Waldemar Wroblewski 113
7.1 Introduction ... 113
7.2 Mathematical Models of the Manipulator and of the Neural Network Observer ... 114
 7.2.1 Manipulator Dynamics 114
 7.2.2 Approximating Neural Networks 114
 7.2.3 Neural Network Observer 115
7.3 Comparison of Alternative Controllers 116
 7.3.1 Neural Controllers 116
 7.3.2 Simulation Results 118
7.4 Wheeled Platform and its Control Scheme 119
 7.4.1 Kinematics Model of the Mobile Robot 119
 7.4.2 Control Scheme 120
7.5 Implementation of the Fuzzy Controller 121
 7.5.1 Trajectory Tracking Controller 122
 7.5.2 Simulation Results 125
7.6 Conclusions ... 125
References .. 127

8 Adaptive Control of Kinematically Redundant Manipulator along a Prescribed Geometric Path
Miroslaw Galicki ... 129
8.1 Introduction ... 129
8.2 Formulation of the Control Problem 130
Contents

8.3 Path Control of the Manipulator ... 132
8.4 A Numerical Example .. 134
8.5 Conclusions ... 136
References ... 138

9 Adaptive Visual Servo Control of Robot Manipulators via Composite Camera Inputs

Türker Sahin, Erkan Zergeroğlu .. 141
9.1 Introduction ... 141
9.2 Robot-camera Model .. 142
 9.2.1 Robot Dynamics .. 142
 9.2.2 Composite Camera Model Development 143
9.3 Control Formulation and Design ... 144
9.4 Simulation Results ... 148
9.5 Conclusion ... 150
References ... 150

10 Flexible Robot Trajectory Tracking Control

Anthony Green, Jurek Z. Sasiadek ... 153
10.1 Introduction ... 153
10.2 Flexible Dynamics .. 154
10.3 Control Strategies .. 154
 10.3.1 LQG with EKF or FLAEKF Control 154
 10.3.2 Extended Kalman Filter ... 155
 10.3.3 Fuzzy Logic Adaptive EKF ... 156
 10.3.4 FLS Adaptive Vibration Suppression 158
10.4 Nonminimum Phase Response ... 159
10.5 Simulation Results .. 160
10.6 Summary and Conclusions ... 160
References ... 161

11 Modeling, Motion Planning and Control of the Drones with Revolving Aerofoils: an Outline of the XSF Project*

Lotfi Beji, Azgal Abichou, Naoufel Azouz .. 165
11.1 Introduction ... 165
11.2 Configuration Description and Modeling 166
11.3 Aerodynamic Forces and Torques ... 167
11.4 Dynamics of Motion ... 169
 11.4.1 Dynamic Motion of the Conventional X4 Flyer 171
11.5 Advanced Strategies of Control .. 171
 11.5.1 Conventional Aerial Vehicle ... 171
 11.5.2 Bidirectional X4-flyer .. 172
11.6 Motion Planning and Simulation Results 174
11.7 Conclusions ... 176
References ... 176
Part III Climbing and Walking Robots

12 Absolute Orientation Estimation for Observer-based Control of a Five-link Walking Biped Robot
Vincent Lebastard, Yannick Aoustin, Franck Plestan 181
12.1 Introduction .. 181
12.2 Model of a Planar Five-link Biped Robot 183
 12.2.1 General and Reduced Dynamic Models 183
 12.2.2 Passive Impact Model 184
 12.2.3 Nonlinear Model All over the Step 185
12.3 Design of the Controller 185
 12.3.1 Strategy .. 185
 12.3.2 Reference Motion for the Swing Phase 186
12.4 Observer Design .. 186
 12.4.1 Analysis of Observability 186
 12.4.2 High-gain Observer 188
 12.4.3 Step-by-step Observer 189
 12.4.4 Loss of Observability and Observation Algorithm 190
12.5 Simulations ... 192
12.6 Conclusion .. 193
References .. 193

13 Biologically Inspired Motion Planning in Robotics
Teresa Zielinska, Chee-Meng Chew 201
13.1 Introduction .. 201
13.2 Adaptive Motion Planning for a Multi-legged Robot 202
 13.2.1 Basic Relations ... 202
 13.2.2 Motion Planning .. 203
 13.2.3 Example ... 204
13.3 Biped Gait Pattern Generator 209
 13.3.1 Model of Coupled Oscillators 210
 13.3.2 Recursive Formula of Gait Generation Considering Joint Feedback .. 214
13.4 Summary .. 215
References .. 216

14 Control of an Autonomous Climbing Robot
Carsten Hillenbrand, Jan Koch, Jens Wettach, Karsten Berns 221
14.1 Introduction ... 221
14.2 Closed-loop Control of the Vacuum System 222
 14.2.1 Dynamic Model of the Adhesion System 222
 14.2.2 Realization of the Control System 224
14.3 Drive and Navigation .. 225
 14.3.1 Kinematic Model of the Omnidirectional Drive 226
 14.3.2 Pose Measurement for Navigation 228
17 Transition-Function Based Approach to Structuring Robot Control Software
Cezary Zielniński .. 265
17.1 Motivation ... 265
17.2 Agents .. 267
17.3 State of a Single Agent 268
17.4 Behaviour of a Single Agent 272
17.5 Types of Systems 277
 17.5.1 Deterministic versus Indeterministic Systems 277
 17.5.2 Crisp versus Fuzzy Systems 278
 17.5.3 Behavioural versus Deliberative Systems .. 281
17.6 Conclusions ... 283
References ... 284

18 Steps Toward Derandomizing RRTs
Stephen R. Lindemann, Steven M. LaValle 287
18.1 Introduction .. 287
18.2 Randomization in RRTs 288
18.3 A Spectrum of RRT-like Planners 289
18.4 Implementation Details and Experimental Results 291
18.5 Conclusions and Future Work 293
References ... 293

19 Tracking Methods for Relative Localisation
Frank E. Schneider, Andreas Kräusling, Dennis Wildermuth 301
19.1 Introduction .. 301
19.2 Mathematical Background 302
 19.2.1 Model .. 302
 19.2.2 The Validation Gate 303
 19.2.3 The Viterbi-based Algorithm 304
 19.2.4 The Kalman Filter Algorithm 306
 19.2.5 Comparison of KFA and VBA 306
19.3 Crossing Targets 306
 19.3.1 The Cluster Sorting Algorithm 307
 19.3.2 A Switching Algorithm 309
 19.3.3 Further Experiments 309
20 Robot Localisation Methods Using the Laser Scanners

Leszek Podścikowski, Marek Idzikowski

20.1 Introduction to Robot Localisation Methods

20.2 Localisation Method Using Vector Description of Workspace

20.2.1 Sensor – a Flat Laser Scanner

20.2.2 Navigation Module

20.2.3 Identification of the Workspace

20.2.4 Laboratory Tests

20.3 Localisation Method Using the Raster Map of the Workspace

20.3.1 The 3D Laser Rangefinder

20.3.2 Description of the PLIM Localisation Method

20.3.3 Simulations

20.3.4 Stationary Experiments

20.3.5 Experiments with Mobile Robot

20.4 Other Localisation Methods

20.5 Summary and Conclusions

Part V Applications of Robotic Systems

21 Complex Control Systems: Example Applications

Piotr Dutkiewicz

21.1 Introduction

21.2 Mechanical Systems

21.3 Design of Sensor and Control System

21.4 Vision System in Complex Control Systems

21.5 Concluding Remarks

22 Examples of Transillumination Techniques Used in Medical Measurements and Imaging

Anna R. Cysewska-Sobusiak, Grzegorz Wiczyński

22.1 Introduction

22.2 Principle of Tissue Layers Transillumination

22.3 Noninvasive Sensing Techniques Used in Transmission Variants of Photoplethysmography and Pulse Oximetry

22.4 Practical Usefulness of Tissue Illumination and Transillumination

22.5 Examples of Transillumination Used in Finger Tissue Imaging

22.6 Concluding Remarks
