Series Editor
John M. Walker
School of Life Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651
Nucleic Acid Detection

Methods and Protocols

Edited by

Dmitry M. Kolpashchikov and Yulia V. Gerasimova

Department of Chemistry, University of Central Florida, Orlando, FL, USA

Humana Press
Preface

Nucleic acid detection has an outstanding potential in molecular diagnostics of cancer, infectious diseases, and genetic disorders. It is undoubtedly successful in environmental monitoring, food control, genetic linkage analysis, as well as in forensic casework. Some of the early sequence-specific detection techniques were introduced in the early 1960s and have been evolving and diversifying since then. Among most useful modern technologies the following are of general importance: gel and capillary electrophoresis (CE), polymerase chain reaction (PCR), quantitative real-time PCR (qPCR), DNA microarrays, fluorescent in situ hybridization (FISH), and Southern blot. This volume is a collection of techniques and emerging approaches for the detection of both DNA and RNA. The presented protocols reflect some of the trends in improving nucleic acid detection methods.

Chapter 1 is relevant to forensic DNA analysis and describes an efficient strategy for the recovery of trace amounts of DNA from touched objects followed by its amplification for the analysis of short tandem repeats. Chapter 2 describes a technique for tissue sample preparation that keeps the morphology intact, thus further RNA analysis can reveal the cancerous components from non-cancerous.

Chapters 3 and 4 describe new qPCR chemistries. One common advantage of the methods is the possibility of using the same fluorescent reporter for many targeted sequences, which may significantly reduce the cost of qPCR reagents. Chapters 5 and 6 describe other qPCR compatible cost-efficient fluorescent probes that have an additional advantage of improved selectivity and specificity. Overall, there is a trend of using universal fluorescent reporters adaptable for the detection of any DNA or RNA target in real-time formats, which promises to make probe-based qPCR more affordable in the near future.

As alternatives to PCR, isothermal DNA amplification techniques are becoming popular. They have the advantage of eliminating the need for PCR thermal cycler thus representing less-demanding and affordable alternatives to PCR in point-of-care (POC) diagnostics. This volume includes examples of helicase-dependent amplification (Chapter 7) and loop-mediated isothermal amplification (LAMP) (Chapters 8–10).

An alternative to DNA amplification is signal amplification approach, which has received significant attention in the last decade. These types of assays do not amplify the amount of target DNA. Instead, the presence of an analyte activates enzymes that amplify the signal by multiple processing of a (fluorogenic) substrate. Invader assay and 5’ fluorogenic exonuclease assay (TaqMan) are examples of such approaches. Yet another signal amplification technique is detailed in Chapter 11 of this book.

Most common methods for nucleic acid detection rely on fluorescent outputs. However, the demand of POC diagnostics calls for the assays with visually recognized signals. Such assays do not require any instrumentation and minimize the processing time and the user expertise required. Techniques based on peroxidase-like DNA enzyme (Chapters 12 and 13) and gold nanoparticles (Chapter 14) are included in this volume. Other alternatives to fluorescence are electrochemiluminescence (Chapter 15), interferometric reflectance imaging (Chapter 16), and electrochemical detection using graphene oxide (Chapter 17).
FISH has been employed for the chromosome analysis since the early 1980s but still undergoes improvements (Chapter 19) and faces new applications (Chapter 2). A FISH-related technology uses short peptide nucleic acid (PNA) strands to unwind a local dsDNA fragment followed by sequence-specific analysis of the opened fragment (Chapter 18). This very promising approach has the advantages of sequence specificity, low detection limits, and mild hybridization conditions.

In recent years significant attention was devoted to the detection of micro RNAs (miRNAs) as they are considered to be important cancer biomarkers (Chapters 2, 20–22). Another extensively explored application is RNA imaging in live cells. This field is driven both by the great success of green fluorescent protein-based protein imaging and growing understanding of the great diversity and importance of intracellular RNA. Chapters 23 and 24 describe new hybridization probes that might be useful for the purposes of intracellular RNA monitoring.

Besides the traditional issues of detection limits, selectivity, and reliability, the one common trend in the new nucleic acid detection methods is to make them suitable for POC diagnostics, which means, reduced assay time, cost efficiency, and simple and straightforward formats. The other trend is detection of micro RNA and RNA in living cells. While one volume cannot accommodate all the existing developments in the field of nucleic acid detection we hope that the presented methods will be useful for those who are interested in DNA or RNA analysis.

Orlando, FL, USA
Dmitry M. Kolpashchikov
Yuila V. Gerasimova
Contents

Preface ... v
Contributors ... xi

PART I ADVANCES IN SAMPLE PREPARATION

1 “Getting Blood from a Stone”: Ultrasensitive Forensic DNA Profiling of Microscopic Bio-Particles Recovered from “Touch DNA” Evidence ... 3
Erin K. Hanson and Jack Ballantyne

2 Detecting MicroRNA in Human Cancer Tissues with Fluorescence In Situ Hybridization .. 19
Zonggao Shi, Jeff J. Johnson, and M. Sharon Stack

PART II NEW REAL-TIME AND INSTANTANEOUS ASSAYS

3 MNAzyme qPCR: A Superior Tool for Multiplex qPCR 31
Elisa Mokany and Alison V. Todd

4 A New, Multiplex, Quantitative Real-Time Polymerase Chain Reaction System for Nucleic Acid Detection and Quantification ... 51

5 Detection of SNP-Containing Human DNA Sequences Using a Split Sensor with a Universal Molecular Beacon Reporter ... 69
Yulia V. Gerasimova, Jack Ballantyne, and Dmitry M. Kolpashchikov

6 SNP Analysis Using a Molecular Beacon-Based Operating Cooperatively (OC) Sensor ... 81
Evan M. Cornett and Dmitry M. Kolpashchikov

PART III ISOTHERMAL AMPLIFICATION METHODS FOR NUCLEIC ACID DETECTION

7 Detection of rpoB Gene Mutations Using Helicase-Dependent Amplification 89
Wanyuan Ao and Robert Jenison

8 Rapid Detection of Brucella spp. Using Loop-Mediated Isothermal Amplification (LAMP) ... 99
Shouyi Chen, Xunde Li, Juntao Li, and Edward R. Atwill
9 Loop-Mediated Isothermal Amplification Method for a Differential Identification of Human *Taenia* Tapeworms .. 109
Yasuhito Sako, Agathe Nkouawa, Tetsuya Yanagida, and Akira Ito

10 Detection of Mutation by Allele-Specific Loop-Mediated Isothermal Amplification (AS-LAMP). .. 121
Hiroka Aonuma, Athanase Badolo, Kiyoshi Okado, and Hirotaka Kanuka

PART IV SIGNAL AMPLIFICATION APPROACH

11 DNA Detection by Cascade Enzymatic Signal Amplification 131
Bingjie Zou, Yinjiao Ma, and Guohua Zhou

PART V NON-FLUORESCENT DETECTION FORMATS

12 Visual DNA Detection and SNP Genotyping Using Asymmetric PCR and Split DNA Enzymes ... 141
Jia Ling Neo and Mahesh Uttamchandani

Herman O. Sintim and Shizuka Nakayama

14 Lateral Flow Biosensors for the Detection of Nucleic Acid. 161
Lingwen Zeng, Puchang Lie, Zhiyuan Fang, and Zhuo Xiao

15 Electrochemiluminescence Detection of c-Myc mRNA in Breast Cancer Cells on a Wireless Bipolar Electrode .. 169
Mei-Sheng Wu, Guang-sheng Qian, Jing-Juan Xu, and Hong-Yuan Chen

16 High-Throughput Label-Free Detection of DNA Hybridization and Mismatch Discrimination Using Interferometric Reflectance Imaging Sensor ... 181
Sunmin Ahn, David S. Freedman, Xirui Zhang, and M. Selim Ünlü

17 Graphene–PAMAM Dendrimer–Gold Nanoparticle Composite for Electrochemical DNA Hybridization Detection 201
Kumarasamy Jayakumar, Rajendiran Rajesh, Venkataraman Dharuman, and Rangarajan Venkatesan

PART VI ADVANCES IN FISH

18 Application of PNA Openers for Fluorescence-Based Detection of Bacterial DNA ... 223
Irina Smolina

19 DNA Probes for FISH Analysis of C-Negative Regions in Human Chromosomes ... 233
Evgeniy S. Moroskin, Tatyana V. Karamysheva, Pavel P. Laktionov, Valentin V. Vlassov, and Nikolay B. Rubtsov
PART VII DETECTION OF MICRORNA

20 Quantitative Analysis of MicroRNA in Blood Serum with Protein-Facilitated Affinity Capillary Electrophoresis
Maxim V. Berezovski and Nasrin Khan

21 High-Throughput Functional MicroRNA Profiling Using Recombinant AAV-Based MicroRNA Sensor Arrays
Wenhong Tian, Xiaoyan Dong, Xiaobing Wu, and Zhijian Wu

22 The Use of Molecular Beacons to Detect and Quantify MicroRNA
Meredith B. Baker, Gang Bao, and Charles D. Searles

PART VIII RNA IMAGING IN LIVE CELLS

23 Sequence-Specific Imaging of Influenza A mRNA in Living Infected Cells Using Fluorescent FIT–PNA
Susann Kummer, Andrea Knoll, Andreas Herrmann, and Oliver Seitz

24 Application of Caged Fluorescent Nucleotides to Live-Cell RNA Imaging
Akimitsu Okamoto

Index
Contributors

Sunmin Ahn • Department of Biomedical Engineering, Boston University, Boston, MA, USA
Wanyuan Ao • Great Basin Corporation, Salt Lake City, UT, USA
Hiroka Aonuma • Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
Neetika Arora • Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
Edward R. Atwill • Department of Population Health and Reproduction, University of California Davis, Davis, CA, USA
Athanase Badoło • University of Ouagadougou, Ouagadougou, Burkina Faso; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
Meredith B. Baker • Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
Jack Ballantyne • National Center for Forensic Science, Orlando, FL, USA; Department of Chemistry, University of Central Florida, Orlando, FL, USA
Gang Bao • Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
Ross T. Barnard • Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
Graeme Barnett • Qponics Limited, Brisbane, QLD, Australia
Maxim V. Berezovski • University of Ottawa, Ottawa, ON, Canada
Hong-Yuan Chen • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
Shouyi Chen • Department of Microbiology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
Evan M. Cornett • Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
Simon R. Corrie • Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
Venkataraman Dharuman • Molecular Electronics Lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, India
Xiaoyan Dong • Beijing FivePlus Molecular Medicine Institute, Beijing, China
Zhiyuan Fang • Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
David S. Freedman • Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
Contributors

YULIA V. Gerasimova • Department of Chemistry, University of Central Florida, Orlando, FL, USA

Erin K. Hanson • National Center for Forensic Science, Orlando, FL, USA

Andreas Herrmann • Molecular Biophysics, Department of Biology, Humboldt University, Berlin, Germany

Akira Ito • Department of Parasitology, Asahikawa Medical University, Asahikawa, Japan

Kumaramaly Jayakumar • Molecular Electronics Lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, India

Robert Jenison • Great Basin Corporation, Salt Lake City, UT, USA

Jeff J. Johnson • Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA

Hirotaka Kanuka • Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan

Tatyana V. Karamysheva • Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation, Novosibirsk, Russia

Nasrin Khan • Department of Chemistry, University of Ottawa, Ottawa, ON, Canada

Andrea Knoll • Organic and Bioorganic Chemistry, Department of Chemistry, Humboldt University, Berlin, Germany

Dmitry M. Kolpashchikov • Department of Chemistry, University of Central Florida, Orlando, FL, USA

Susann Kummer • Max Planck Institute Chemistry, Gottingen, Germany

Richard Lai • Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia

Pavel P. Laktionov • Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation

Juntao Li • Department of Microbiology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China

Xunde Li • Department of Population Health and Reproduction, University of California Davis, Davis, CA, USA

Fang Liang • Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia

Puchang Lie • Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China

Yinjiao Ma • Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China

Elisa Mokany • SpecDx Pty Ltd., Eveleigh, NSW, Australia

Evgeniy S. Morozkin • Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation

Shizuka Nakayama • Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA

Jia Ling Neo • Department of Chemistry, Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore

Agathe Nkouawa • Department of Parasitology, Asahikawa Medical University, Asahikawa, Japan
KIYOSHI OKADO • Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan

AKIMITSU OKAMOTO • The Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan

DARNLEY PEARSON • Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia

GUANG-SHENG QIAN • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China

RAJENDIRAN RAJESH • Department of Chemistry, Pondicherry University, Pondicherry, India

NIKOLAY B. RUBTSOV • Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation, Novosibirsk, Russia

YASUHITO SAKO • Department of Parasitology, Asahikawa Medical University, Asahikawa, Japan

CHARLES D. SEARLES • Division of Cardiology, Emory University School of Medicine and Atlanta Veterans Administration Medical Center, Atlanta, GA, USA

OLIVER SEITZ • Organic and Bioorganic Chemistry, Department of Chemistry, Humboldt University, Berlin, Germany

ZONGGAO SHI • Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA

HERMAN O. SINTIM • Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA

THEO SLOOTS • Queensland Paediatric Infectious Diseases Laboratory, Queensland Children’s Medical Research Institute, the University of Queensland, Herston, QLD, Australia

IRINA SMOLINA • Department of Biomedical Engineering, Boston University, Boston, MA, USA

M. SHARON STACK • Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA

WENHONG TIAN • College of Life Science, Jilin University, Changchun, Jilin, China

ALISON V. TODD • SpeeDx Pty Ltd., Eveleigh, NSW, Australia

M. SELIM ÜNLÜ • Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA

MAHESH UTTAMCHANDANI • Department of Chemistry, Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore

RANGARAJAN VENKATESAN • Department of Chemistry, Pondicherry University, Pondicherry, India

VALENTIN V. VLASSOV • Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation

DAVID WHILEY • Queensland Paediatric Infectious Diseases Laboratory, Queensland Children’s Medical Research Institute, the University of Queensland, Herston, QLD, Australia
MEI-SHENG WU • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
XIAOBING WU • Beijing FivePlus Molecular Medicine Institute, Beijing, China
ZHIJIAN WU • Unit on Ocular Gene Therapy, National Eye Institute, NIH, Bethesda, MD, USA
ZHOU XIAO • Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
JING-JUAN XU • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
TETSUYA YANAGIDA • Department of Parasitology, Asahikawa Medical University, Asahikawa, Japan
DAVID CHE CHENG YEH • Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
LINGWEN ZENG • Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
KANG LIANG ZHANG • Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
XIRUI ZHANG • Department of Biomedical Engineering, Boston University, Boston, MA, USA
GUOHUA ZHOU • Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
BINGJIE ZOU • Department of Pharmacology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China