For further volumes:
http://www.springer.com/series/7651
Infectious diseases represent a significant global health threat. The rise of multidrug-resistant pathogens and the increased potential for the emergence of a catastrophic disease pandemic have ushered in a new era in immunology research, which has become more focused on understanding host–pathogen interactions. Throughout evolution, the immune system has shown an extraordinary ability to adapt and protect the host from pathogen invasion. The innate immune system represents a critical arm of the immune response by providing immediate and robust host defense. The cornerstone of the innate immune response is the diverse group of cells, including macrophages, neutrophils, and lymphocytes, that contribute to host defense through the recognition, isolation, and eradication of pathogens. These cells rely on an assortment of extracellular and intracellular pattern recognition receptors, which sense pathogen- or damage-associated molecular patterns, in order to initiate the hallmark molecular signaling cascades that are associated with innate immunity.

Biomedical research is driven by the desire to improve the health and welfare of human patients. However, human studies are often limited by ethical, logistical, and technical obstacles. In many cases, these obstacles can be difficult to overcome. In an effort to circumvent many of these limitations, researchers have turned to mice as either surrogate or complementary models for many human disease studies. The readily available assortment of genetically manipulated mouse strains provides researchers with powerful tools to dissect the complex interactions associated with the innate immune response and host defense. Advances in mouse genetics have occurred in parallel with human clinical studies, and, together, these strategies have significantly complemented our understanding of the disease processes associated with innate immunity.

Mouse Models of Innate Immunity: Methods and Protocols has assembled a diverse and highly regarded group of contributors with extensive experience in genetics, microbiology, immunology, and in vivo model systems. Similar to the other volumes in the Methods in Molecular Biology series, these contributors have provided detailed protocols for the design and execution of experiments to thoroughly evaluate critical elements associated with the host innate immune response. Emphasis has been placed on mouse models that accurately mimic clinically relevant disease processes in response to a variety of insults and pathogen exposures. The first half of this book focuses on methods that are essential for collecting and assessing various primary cells that are highly relevant to innate immunity. These ex vivo protocols provide simplified systems to evaluate hypotheses without many of the confounding issues that are often associated with the complexity of in vivo models. The second half of the book is devoted to in vivo protocols commonly used to evaluate the innate immune response in the mouse, including mouse models of respiratory infection, gastrointestinal inflammation,
fungal and parasitic diseases, sepsis, and HIV-1 infection. It is my sincere hope that *Mouse Models of Innate Immunity* will serve the research community by providing expert advice and protocols that allow both experienced and novice investigators to successfully plan, implement, and assess disease processes associated with the innate immune response.

Blacksburg, VA, USA
Irving C. Allen
Contents

Preface ... v
Contributors .. ix

1 Conventional Murine Gene Targeting .. 1
 Albert G. Zimmermann and Yue Sun

2 Production and Characterization of Humanized Rag2−/−γc−/− Mice 19
 Freddy M. Sanchez, German I. Cuadra, Stanton J. Nielsen,
 Anne Tanner, and Bradford K. Berges

3 Isolation, Culture, and Functional Evaluation of Bone
 Marrow-Derived Macrophages ... 27
 Beckley K. Davis

4 Collecting Resident or Thioglycollate-Elicited Peritoneal Macrophages 37
 Monika Schneider

5 Quantification and Visualization of Neutrophil Extracellular
 Traps (NETs) from Murine Bone Marrow-Derived Neutrophils 41
 Linda Vong, Philip M. Sherman, and Michael Glogauer

6 Assessment of Oxidative Metabolism 51
 Emilie Imbeault and Denis Gris

7 Generation and Culture of Mouse Embryonic Fibroblasts 59
 Yu Lei

8 Primary Ear Fibroblast Derivation from Mice 65
 Chris B. Moore and Irving C. Allen

9 Bone Marrow-Derived Dendritic Cells 71
 Kelly Roney

10 Measuring T Cell Function in Innate Immune Models 77
 Brianne R. Barker

11 Bioassay for the Measurement of Type-I Interferon Activity 91
 Douglas G. Widman

12 Safe and Effective Mouse Footpad Inoculation 97
 Kristin M. Long and Mark Heise

13 Delayed-Type Hypersensitivity Models in Mice 101
 Irving C. Allen

14 Mouse Model of Staphylococcus aureus Skin Infection 109
 Natalia Malachowa, Scott D. Kobayashi, Kevin R. Braughton,
 and Frank R. DeLeo
15 Sepsis Induced by Cecal Ligation and Puncture 117
 Haitao Wen

16 Systemic Infection of Mice with *Listeria monocytogenes*
to Characterize Host Immune Responses 125
 Nancy Wang, Richard A. Strugnell, Odilia L. Wijburg,
 and Thomas C. Brodnicki

17 Mouse Model of Invasive Fungal Infection 145
 Donna M. MacCallum

18 Endotoxin-Induced Uveitis in Rodents 155
 Umesh C.S. Yadav and Kota V. Ramana

19 Bacteria-Mediated Acute Lung Inflammation 163
 Irving C. Allen

20 Intranasal Influenza Infection of Mice and Methods
to Evaluate Progression and Outcome 177
 Catherine J. Sanders, Brian Johnson, Charles W. Frevert,
 and Paul G. Thomas

21 Dextran Sodium Sulfate-Induced Murine Inflammatory
 Colitis Model ... 189
 Monika Schneider

22 Bacterial Mediated Gastrointestinal Inflammation 197
 Joshua Uronis and Xiaolun Sun

23 *Plasmodium berghei* ANKA (PbA) Infection of C57BL/6J Mice:
 A Model of Severe Malaria ... 203
 Marcela Montes de Oca, Christian Engwerda, and Ashraful Haque

24 Characterization of HIV-1 Infection in the Humanized
 Rag2^{−/−}/γc^{−/−} Mouse Model 215
 Freddy M. Sanchez and Bradford K. Berges

Index .. 223
Contributors

IRVING C. ALLEN • Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

BRIANNE R. BARKER • Biology Department, Drew University, Madison, NJ, USA

BRADFORD K. BERGES • Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA

KEVIN R. BRAUGHTON • Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA

THOMAS C. BRODNICKI • Immunology and Diabetes, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia

GERMAN I. CUADRA • Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA

BECKLEY K. DAVIS • Department of Biology, Franklin & Marshall College, Lancaster, PA, USA

FRANK R. DELLEO • Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA

CHRISTIAN ENGWERDA • Immunology and Infection Laboratory, Queensland Institute of Medical Research, Herston, QLD, Australia

CHARLES W. FREVERT • Division of Pulmonary and Critical Care Medicine, Department of Comparative Medicine, University of Washington, Seattle, WA, USA

MICHAEL GLOGAUSER • Faculties of Medicine & Dentistry, University of Toronto, Toronto, ON, Canada

DENIS GRIS • Division of Immunology, Department of Pediatrics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada

ASHRAFUL HAQUE • Malaria Immunology Laboratory, Queensland Institute of Medical Research, Herston, QLD, Australia

MARK HEISE • Department of Genetics, The University of North Carolina, Chapel Hill, NC, USA

EMILIE IMBEAULT • Department of Biochemistry, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada

BRIAN JOHNSON • Division of Pulmonary and Critical Care Medicine, Department of Comparative Medicine, University of Washington, Seattle, WA, USA

SCOTT D. KOBAYASHI • Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA

YU LEI • Department of Diagnostic Sciences, School of Dental Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
Contributors

Kristin M. Long • Department of Genetics, The University of North Carolina, Chapel Hill, NC, USA
Donna M. MacCallum • Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
Natalia Malachowa • Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
Chris B. Moore • Antiviral Discovery, GlaxoSmithKline, Research Triangle Park, Durham, NC, USA
Marcela Montes de Oca • Immunology and Infection Laboratory, Queensland Institute of Medical Research, Herston, QLD, Australia
Stanton J. Nielsen • Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
Kota V. Ramana • Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
Kelly Roney • RTI International, Research Triangle Park, Durham, NC, USA
Freddy M. Sanchez • Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
Catherine J. Sanders • Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
Monika Schneider • Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, CA, USA
Philip M. Sherman • Faculties of Medicine & Dentistry, University of Toronto, Toronto, ON, Canada
Richard A. Strugnell • Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
Xiaolun Sun • Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Yue Sun • Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Anne Tanner • Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
Paul G. Thomas • Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
Joshua Uronis • Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
Linda Vong • Faculty of Medicine, University of Toronto, Toronto, ON, Canada
Nancy Wang • Immunology and Diabetes, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
Haitao Wen • Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Douglas G. Widman • Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Contributors

ODILIA L. WIJBURG • Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia

UMESH C.S. YADAV • Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA

ALBERT G. ZIMMERMANN • Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA