Preface

In Vitro and In Vivo Cell Senescence

Cell senescence, i.e., the process whereby cells permanently lose the possibility to proliferate without undergoing cell death, can be observed in vitro as well as in vivo, and occurs in a plethora of distinct model organisms. In both cases, cell senescence can be physiological, constituting a safeguard mechanism against cells that have accumulated potentially dangerous genetic alterations, or can be triggered by exogenous perturbations, such as the administration of DNA-damaging agents at low doses. This book provides a detailed description of the most common techniques for the investigation of cell senescence, in model organisms encompassing bacteria (Escherichia coli), fungi (Saccharomyces cerevisiae and Podospora anserina), worms (Caenorhabditis elegans), flies (Drosophila melanogaster), zebrafish (Danio rerio), and mammalian cells. The techniques presented in this book not only cover the study of all the biochemical and functional manifestations of senescence at the cellular level but also include protocols for population analysis and high-throughput approaches in suitable model organisms, as described by worldwide renowned experts of the field.

Chapter Organization

The book is composed of three types of chapters. Four review chapters open the book to provide a solid theoretical background on cell senescence, its morphological and biochemical manifestations and its pathophysiological relevance. Twenty-three protocol chapters follow, detailing the methods to investigate the morphological and biochemical features of senescence at the cellular level, in cultured mammalian cells. Finally, seven protocol chapters provide techniques for the study of cell senescence in lower model organisms, including methods for population studies. Each of these 30 protocols starts with an Abstract and includes four major sections: Introduction, Materials, Methods, and Notes. The “Abstract” presents an overview of the technique(s) detailed in the chapter. The “Introduction” provides a short theoretical view of the procedure and of its applications. “Materials” recapitulate the buffers, reagents, solutions, disposables, and equipments necessary to carry out the protocol(s). “Methods” describe step-by-step how the technique(s) must be carried out. Finally, the “Notes” section, which is the hallmark of Methods in Molecular Biology series, indicates not only the sources of problems and how to identify and overcome them, but also safety information, alternative procedures, and hints for the correct interpretation of experimental results.
Brief Content of the Chapters

Chapter 1 provides an overview on cell senescence and its dynamic links with autophagy, an important cytoprotective mechanism. Chapters 2 and 3 discuss the regulation of cell senescence by critical signaling molecules such as the mammalian target of rapamycin (mTOR) and p53. Chapter 4 summarizes the morphological and biochemical markers that have been associated with cell senescence. In Chapters 5–23, protocols for the investigation of senescence-associated alterations in cultured cells are provided, including the following: morphological features (Chapter 5), cell cycle blockage (Chapter 6), cell cycle-arresting proteins (Chapter 7), senescence-associated β-galactosidase (Chapters 8 and 9), senescence-associated secretory phenotype and chemokine signaling (Chapters 10 and 11), senescence-associated heterochromatin foci (Chapter 12), DNA damage (Chapter 13), telomerase activity and telomere length (Chapters 14 and 15), alterations of the nuclear envelope (Chapter 16), multiple markers of oxidative stress (Chapters 17–20), BRAF, sirtuin, and p66SHC signaling during senescence (Chapters 21–23). In Chapters 24–27, protocols for the study of cell senescence in global terms are detailed, including a method for the study of metabolomic alterations (Chapter 24), a technique to apply genome-wide RNAi approaches to cell senescence research (Chapter 25), and multiparametric strategies (Chapters 26 and 27). Finally, in Chapters 28–34, protocols applicable to lower model organisms are described, encompassing techniques to assess senescence in *Escherichia coli* (Chapter 28), *Podospora anserina* (Chapter 29), *Saccharomyces cerevisiae* (Chapter 30), *Caenorhabditis elegans* (Chapters 31 and 32), *Drosophila melanogaster* (Chapter 33), and *Danio rerio* (Chapter 34).

Potential Audience of This Book

In the first instance, this book will be of interest not only for undergraduate and graduate students but also for more experienced scientists who are approaching the study of cell senescence. In addition, the audience of this book encompasses:

- Libraries of universities and public biological/biomedical research institutions.
- Scientists interested in molecular and cell biology, biochemistry, pharmacology, genetics, systems biology, medicine, public health, and in life sciences in general.
- Specialists and experts in model organisms including bacteria, fungi, worms, flies, and mammals.
- Medical oncologists and scientists working in oncology.
- Pharmaceutical companies and developers of new drugs.

Villejuif, France

Lorenzo Galluzzi
Ilio Vitale
Oliver Kepp
Guido Kroemer
Contents

Preface ... v
Contributors .. ix

1 Cell Senescence as Both a Dynamic and a Static Phenotype 1
 Andrew R.J. Young, Masako Narita, and Masashi Narita

2 Senescence Regulation by mTOR 15
 Vjekoslav Dulic

3 Senescence Regulation by the p53 Protein Family 37
 Yingjuan Qian and Xinbin Chen

4 Markers of Cellular Senescence 63
 Amancio Carnero

5 Biomarkers of Cell Senescence Assessed by Imaging Cytometry 83
 Hong Zhao and Zbigniew Darzynkiewicz

6 Cytofluorometric Assessment of Cell Cycle Progression 93
 Ilio Vitale, Mohamed Jemai, Lorenzo Galluzzi, Didier Metivier, Maria Castedo, and Guido Kroemer

7 Quantification of Cell Cycle-Arresting Proteins 121
 Oliver Kepp, Isabelle Martins, Laurie Menger, Mickaël Michaud, Sandy Adjemian, Abdul Qader Sukkurwala, Lorenzo Galluzzi, and Guido Kroemer

8 Colorimetric Detection of Senescence-Associated β Galactosidase 143
 Koji Itahana, Yoko Itahana, and Goberdhan P. Dimri

9 Chemiluminescent Detection of Senescence-Associated β Galactosidase 157
 Vinicius Bassaneze, Ayumi Aurea Miyakawa, and José Eduardo Krieger

10 Detection of the Senescence-Associated Secretory Phenotype (SASP) 165
 Francis Rodier

11 Unbiased Characterization of the Senescence-Associated Secretome
 Using SILAC-Based Quantitative Proteomics 175
 Juan Carlos Acosta, Ambrosius P. Snijders, and Jesús Gil

12 Detection of Senescence-Associated Heterochromatin Foci (SAHF) 185
 Katherine M. Aird and Rugang Zhang

13 Monitoring DNA Damage During Cell Senescence 197
 Glyn Nelson and Thomas von Zglinicki

14 Assessment and Quantification of Telomerase Enzyme Activity 215
 Michelle F. Maritz, Laura A. Richards, and Karen L. MacKenzie

15 Methods for the Assessment of Telomere Status 233
 Asako J. Nakamura
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Detection of Nuclear Envelope Alterations in Senescence</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Clea Bárcena, Fernando G. Osorio, and José María Pérez Freije</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Measuring Reactive Oxygen Species in Senescent Cells</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>João F. Passos, Satomi Miwa, and Thomas von Zglinicki</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Quantification of Protein Carbonylation</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Nancy B. Wehr and Rodney L. Levine</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Assays for the Measurement of Lipid Peroxidation</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Ana Cipak Gasparovic, Morana Jaganjac, Branka Mihaljevic, Suzana Borovic Sunjic, and Neven Zarkovic</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Raman Spectroscopy for the Detection of AGEs/ALEs</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>J. Renwick Beattie, John J. McGarvey, and Alan W. Stitt</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Monitoring Oncogenic B-RAF-Induced Senescence in Melanocytes</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Sieu L. Tran and Helen Rizos</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Methods to Investigate the Role of SIRT1 in Endothelial Senescence</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Bo Bai and Yu Wang</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Monitoring Nutrient Signaling Through the Longevity Protein p66SHC1</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Sofia Chiatamone Ranieri and Giovambattista Pani</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Profiling the Metabolic Signature of Senescence</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>Florian M. Geier, Silke Fuchs, Gabriel Valbuena, Armand M. Leroi, and Jacob G. Bundy</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Genome-Wide RNAi Screening to Identify Regulators of Oncogene-Induced Cellular Senescence</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Narendra Wajapeyee, Sara K. Deibler, and Michael R. Green</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>An Integrated Approach for Monitoring Cell Senescence</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>Tatiana V. Pospelova, Zhanna V. Chitikova, and Valery A. Pospelov</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Robust Multiparametric Assessment of Cellular Senescence</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>Clara Correia-Melo, Diana Jurk, and João F. Passos</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Assessing Chronological Aging in Bacteria</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>Stavros Gonidakis and Valter D. Longo</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Assessing Organismal Aging in the Filamentous Fungus Podospora anserina</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>Heinz D. Osiewacz, Andrea Hamann, and Sandra Zintel</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Assessing Chronological Aging in Saccharomyces cerevisiae</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>Jia Hu, Min Wei, Mario G. Mirisola, and Valter D. Longo</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Assessing Aging and Senescent Decline in Caenorhabditis elegans: Cohort Survival Analysis</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>Eirini Lionaki and Nektarios Tavernarakis</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>High-Throughput and Longitudinal Analysis of Aging and Senescent Decline in Caenorhabditis elegans</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>Eirini Lionaki and Nektarios Tavernarakis</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Assessing Senescence in Drosophila Using Video Tracking</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>Reza Ardekani, Simon Tavaré, and John Tower</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Assessing Vascular Senescence in Zebrafish</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>Sandra Donnini, Antonio Giachetti, and Marina Ziche</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>533</td>
</tr>
</tbody>
</table>
Contributors

JUAN CARLOS ACOSTA • Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College, London, UK

SANDY ADJEMIAN • INSERM, U848, Villejuif, France; Institut Gustave Roussy, Villejuif, France

KATHERINE M. AIRD • Women’s Cancer Program, Epigenetics and Progenitor Cells Keystone Program, Fox Chase Cancer Center, Philadelphia, PA, USA

REZA ARDEKANI • Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

BO BAI • Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China

CLEA BÁRCENA • Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain

VINICIUS BASSANEZE • Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil

J. RENWICK BEATTIE • Centre for Vision and Vascular Science, School of Medicine and Dentistry, Queen’s University, Belfast, UK

JACOB G. BUNDY • Biomolecular Medicine, Department of Surgery and Cancer, Imperial College, London, UK

AMANCIO CARNERO • Instituto de Biomedicina, Hospital Universitario Virgen del Rocío, Sevilla, Spain

MARIA CASTEDO • INSERM, U848, Villejuif, France; Institut Gustave Roussy, Villejuif, France

XINBIN CHEN • Comparative Oncology Laboratory, University of California, Davis, CA, USA

ZHANNA V. CHITIKOVA • Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia

CLARA CORREIA-MELO • Ageing Research Laboratories, Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK

ZBYGNIEW DARZYNIKIEWICZ • Department of Pathology, Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA

SARA K. DEIBLER • Howard Hughes Medical Institute, Chevy Chase, MD, USA; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA

GOBERDJan P. Dimri • Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC, USA

SANDRA DONNINI • Department of Biotechnology, University of Siena, Siena, Italy

VIJEKOSLAV DULIC • Institut de Génétique Moléculaire, Montpellier, France; CNRS, UMR5535, Montpellier, France; Université Montpellier 1, Montpellier, France

JOSE MARIA PEREZ FREJJE • Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain

SILKE FUCHS • Cell and Molecular Biology, Department of Life Sciences, Imperial College, London, UK
LORENZO GALLUZZI • Institut Gustave Roussey, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
ANA CIPAK GASPAROVIC • Rudjer Boskovic Institute, Zagreb, Croatia
FLORIAN M. GEIER • Biomolecular Medicine, Department of Surgery and Cancer, Imperial College, London, UK
ANTONIO GIACHETTI • Department of Biotechnology, University of Siena, Siena, Italy
JESÚS GIL • Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College, London, UK
STAVROS GONIDAKIS • Department of Biological Sciences, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, USA
MICHAEL R. GREEN • Howard Hughes Medical Institute, Chevy Chase, MD, USA; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
ANDREA HAMANN • Faculty of Biosciences, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany; Frankfurt Cluster of Excellence “Macromolecular Complexes”, Frankfurt, Germany
JIA HU • Ethel Percy Andrus Gerontology Center, Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
KOJI ITAHANA • Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
YOKO ITAHANA • Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
MORANA JAGANJAC • Rudjer Boskovic Institute, Zagreb, Croatia
MOHAMED JEMÅA • INSERM, U848, Villejuif, France; Institut Gustave Roussy, Villejuif, France
DIANA JURK • Ageing Research Laboratories, Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
OLIVER KEPP • INSERM, U848, Villejuif, France; Institut Gustave Roussy, Villejuif, France
JOSÉ EDUARDO KRIEGER • Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
GUIDO KROEMER • Centre de Recherche des Cordeliers, Paris, France; INSERM, U848, Villejuif, France; Metabolomics Platform, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
ARMAND M. LEROI • Ecology and Evolution, Department of Life Sciences, Imperial College, London, UK
RODNEY L. LEVINE • Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
EIRINI LIONAKI • Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
VALTER D. LONGO • Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, USA
CARLOS LÓPEZ-OTÍN • Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
ISABELLE MARTINS • INSERM, U848, Villejuif, France; Institut Gustave Roussy, Villejuif, France
KAREN L. MACKENZIE • Cancer Cell Development Group, Children's Cancer Institute Australia, Randwick, Australia; Lowy Cancer Research Centre, University of New South Wales, Randwick, Australia
Contributors

MICHELLE F. MARITZ • Cancer Cell Development Group, Children’s Cancer Institute Australia, Randwick, Australia; Lowy Cancer Research Centre, University of New South Wales, Randwick, Australia

JOHN J. McGARVEY • School of Chemistry and Chemical Engineering, Queen’s University, Belfast, UK

LAURIE MENGERT • INSERM, U848, Villejuif, France; Institut Gustave Roussey, Villejuif, France

DIDIER METIVIER • INSERM, U848, Villejuif, France; Institut Gustave Roussey, Villejuif, France

MICKAËL MICHAUD • INSERM, U848, Villejuif, France; Institut Gustave Roussey, Villejuif, France

BRANKA MIHALJEVIC • Rudjer Boskovic Institute, Zagreb, Croatia

MARIO G. MIRISOLA • Department of Medical and Forensic Biopathology e Biotechnology, University of Palermo, Palermo, Italy

SATOMI MIWA • Ageing Research Laboratories, Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK

AYUMI AUREA MIYAKAWA • Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil

ASako J. NAKAMURA • Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Japan

MASAKO NARITA • Cancer Research UK, Cambridge Research Institute, Cambridge, UK

MASASHI NARITA • Cancer Research UK, Cambridge Research Institute, Cambridge, UK

GLYN NELSON • Ageing Research Laboratories, Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK

HEINZ D. OSIEWACZ • Faculty of Biosciences, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany; Frankfurt Cluster of Excellence “Macromolecular Complexes”, Frankfurt, Germany

FERNANDO G. OSORIO • Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain

GIOVAMBATTISTA PANI • Institute of General Pathology, Catholic University Medical School, Rome, Italy

JOÃO F. PASSOS • Ageing Research Laboratories, Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK

VALERY A. POSPELOV • Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia

TATIANA V. POSPELOVA • Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia

YINGJUAN QIAN • Comparative Oncology Laboratory, University of California, Davis, CA, USA

SOFIA CHIATAMONE RANIERI • Clinical Chemistry, Laboratory and Endocrinology Unit, Departement of Laboratory Medicine, Azienda Ospedaliera ASMN, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy

LAURA A. RICHARDS • Cancer Cell Development Group, Children’s Cancer Institute Australia, Randwick, Australia; Lowy Cancer Research Centre, University of New South Wales, Randwick, Australia
HELEN RIZOS • Melanoma Institute Australia, North Sydney, Australia University of Sydney, Sydney, Australia; Westmead Institute for Cancer Research, Westmead Millennium Institute for Medical Research, Westmead, Australia
FRANCIS RODIER • Institut du cancer de Montréal, Centre de recherche du CHUM, Montréal, Canada
AMBROSIO P. SNIJDERS • Biomolecular Mass Spectrometry and Proteomics Laboratory, MRC Clinical Sciences Centre, Imperial College, London, UK
ALAN W. STITT • Centre for Vision and Vascular Science, School of Medicine and Dentistry, Queen’s University, Belfast, UK
ABDUL QADER SUKKURWALA • INSERM, U848, Villejuif, France; Institut Gustave Roussey, Villejuif, France
SUZANA BOROVIC SUNJIC • Rudjer Boskovic Institute, Zagreb, Croatia
SIMON TAVARÉ • Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Department of Oncology, University of Cambridge, Cambridge, UK; Cancer Research UK, Cambridge Research Institute, Cambridge, UK
NEKTARIOS TAVERNAKIS • Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
JOHN TOWER • Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
SIEU L. TRAN • Melanoma Institute Australia, North Sydney, Australia; University of Sydney, Sydney, Australia; Westmead Institute for Cancer Research, Westmead Millennium Institute for Medical Research, Westmead, Australia
GABRIEL VALBUENA • Biomolecular Medicine, Department of Surgery and Cancer, Imperial College, London, UK
ILIO VITALE • INSERM, U848, Villejuif, France; Institut Gustave Roussey, Villejuif, France
THOMAS VON ZGLINICKI • Ageing Research Laboratories, Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
NARENDRA WAJAPEYEE • Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
YU WANG • Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
NANCY B. WEHR • Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
MIN WEI • Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, USA
ANDREW R.J. YOUNG • Cancer Research UK, Cambridge Research Institute, Cambridge, UK
NEVEN ZARKOVIC • Rudjer Boskovic Institute, Zagreb, Croatia
RUGANG ZHANG • Women’s Cancer Program, Epigenetics and Progenitor Cells Keystone Program, Fox Chase Cancer Center, Philadelphia, PA, USA
HONG ZHAO • Department of Pathology, Brander Cancer Research Institute, New York Medical College, Valhalla, NY, USA
MARINA ZICHE • Department of Biotechnology, University of Siena, Siena, Italy
SANDRA ZINTEL • Faculty of Biosciences, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany; Frankfurt Cluster of Excellence “Macromolecular Complexes”, Frankfurt, Germany