Preface

The development of the hybridoma technology created the possibility to obtain unlimited amounts of monoclonal antibodies (mAb) with high specificity and affinity for any target and to introduce mAbs in a wide range of applications. Examples of antibody-based drugs in therapeutic settings and antibody-based probes in diagnostics are infinite. However, the bulky size of mAbs, costly production, and cumbersome engineering retarded or hampered regularly their streamlined development in some applications. Consequently, mAbs became the focus of many attempts to minimize the size and complexity of their antigen-binding fragments. Eventually, these efforts led to the recombinant production of smaller antigen-binding fragments such as Fab or scFv (where a synthetic linker connects the variable domains of heavy and light chain, i.e., VH and VL), and even sdAbs (single domain antibodies derived mostly of the VH). Although the first set of sdAbs offered significant advantages, they also suffered from multiple shortcomings, all of which have been remediated by elegant engineering. Interestingly, while scientists were designing, engineering, and shaping the ideal sdAb, a serendipitous discovery showed that a similar engineering occurred already in nature in the camelids, and later on, it was found that cartilaginous fish antibodies performed the exercise even earlier on in evolution. These animals have in their blood functional antibody isotype composed of heavy chains—only that lack light chains, in addition to the classical antibodies containing two heavy and two light chains. These heavy-chain antibodies (HCAbs) recognize the antigen via a single variable domain, referred to as VHH or V-NAR. The VHH or V-NAR is the smallest intact antigen-binding fragment that can be produced recombinantly at low cost.

The valuable properties of man-made sdAbs, VHHs, and V-NARs including solubility and stability, high affinity and specificity for their cognate antigen, small size and strict monomeric behavior offer many opportunities. As a result, several spin-off companies have been founded in Australia, Belgium, England, Germany, Netherlands, and Scotland that introduced these proteins successfully in a wide range of applications to cover a special need in research or even to produce next-generation therapeutics in the clinic.

Brussels, Belgium

Dirk Saerens

Serge Muylleman
Contents

Preface .. v
Contributors ... xi

PART I OVERVIEW OF SINGLE DOMAIN ANTIBodies

1 From Whole Monoclonal Antibodies to Single Domain Antibodies:
 Think Small ... 3
 Jean-Luc Teillaud

2 Introduction to Heavy Chain Antibodies and Derived Nanobodies 15
 Cécile Vincke and Serge Muyldermans

3 Overview and Discovery of IgNARs and Generation of VNARs. 27
 Stewart D. Nuttall

PART II S INGLE DOMAIN ANTIBODY LIBRARY CONSTRUCTION

4 Creation of the Large and Highly Functional Synthetic Repertoire
 of Human VH and V\(k\) Domain Antibodies 39
 *Olga Ignatovich, Laurent Jespers, Ian M. Tomlinson,
 and Ruud M.T. de Wildt*

5 Preparation of a Naïve Library of Camelid Single Domain Antibodies 65
 Aurelien Olichon and Ario de Marco

PART III S ELECTION OF SINGLE DOMAIN ANTIBodies

6 Selection by Phage Display of Single Domain Antibodies Specific
 to Antigens in Their Native Conformation 81
 Peter Verheesen and Toon Learemans

7 Semiautomated Panning of Naïve *Camelidae* Libraries and Selection
 of Single-Domain Antibodies Against Peptide Antigens 105
 Jyothi Kumaran, C. Roger MacKenzie, and Mehdi Arbabi-Ghabrouri

8 *Pichia* Surface Display: A Tool for Screening Single Domain Antibodies 125
 Kristof De Schutter and Nico Callewaert

9 Bacterial Two Hybrid: A Versatile One-Step
 Intracellular Selection Method ... 135
 Mireille Pellis, Serge Muyldermans, and Cécile Vincke

10 Intracellular Antibody Capture (IAC) Methods
 for Single Domain Antibodies ... 151
 Tomoyuki Tanaka and Terence H. Rabbitts
11 Selection of Functional Single Domain Antibody Fragments for Interfering with Protein–Protein Interactions Inside Cells: A “One Plasmid” Mammalian Two-Hybrid System ... 175
 Tomoyuki Tanaka and Terence H. Rabbitts

12 Cell-Free Selection of Domain Antibodies by In Vitro Compartmentalization . 183
 Armin Sepp and Andrew Griffiths

13 Selection of VHHs Under Application Conditions 199
 Edward Dolk, Theo Verrips, and Hans de Haard

14 Isolation and Characterization of Clostridium difficile Toxin-Specific Single-Domain Antibodies ... 211
 Greg Hussack, Mehdi Arbabi-Ghabrouri, C. Roger MacKenzie, and Jamshid Tanha

15 Selection of VHH Antibody Fragments That Recognize Different Aβ Depositions Using Complex Immune Libraries ... 241
 Rinse Klooster, Kim S. Rutgers, and Silvère M. van der Maarel

PART IV EXPRESSION OF SINGLE DOMAIN ANTIBODIES AND DERIVATIVES

16 Expression of Single-Domain Antibodies in Bacterial Systems 257
 Toya Nath Baral and Mehdi Arbabi-Ghabrouri

17 Expression of VHHs in Saccharomyces cerevisiae 277
 Andrea Gorlani, Hans de Haard, and Theo Verrips

18 Stable Expression of Chimeric Heavy Chain Antibodies in CHO Cells 287
 Vishal Agrawal, Igor Slivac, Sylvie Perret, Louis Bisson, Gilles St-Laurent, Yanal Murad, Jianbing Zhang, and Yves Durocher

19 Production of Camel-Like Antibodies in Plants .. 305
 Sylvie De Buck, Vikram Virdi, Thomas De Meyer, Kirsten De Wilde, Robin Piron, Jonah Nolf, Els Van Lerberge, Annelies De Paepe, and Ann Depicker

PART V IMPROVEMENT AND APPLICATIONS OF SINGLE DOMAIN ANTIBODIES

20 Selecting and Purifying Autonomous Human Variable Heavy (VH) Domains 327
 Raffi Tonikian and Sachdev S. Sidhu

21 Solubility and Stability Engineering of Human VH Domains 355
 Dae Young Kim, Wen Ding, and Jamshid Tanha

22 Improvement of Proteolytic Stability Through In Silico Engineering 373
 Lucy Rutten, Hans de Haard, and Theo Verrips

23 Selection of Human VH Single Domains with Improved Biophysical Properties by Phage Display ... 383
 Kip Dudgeon, Romain Rouet, Kristoffer Famm, and Daniel Christ

24 Improvement of Single Domain Antibody Stability by Disulfide Bond Introduction ... 399
 Yoshihisa Hagihara and Dirk Saerens
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Affinity Maturation of Single-Domain Antibodies by Yeast Surface Display</td>
<td>Akiko Koide and Shohei Koide</td>
<td>431</td>
</tr>
<tr>
<td>28</td>
<td>Methods for Determining the PK Parameters of AlbudAbs™ and of Long Serum Half-Life Drugs Made Using the AlbudAb™ Technology</td>
<td>Daniel Rycroft and Lucy J. Holt</td>
<td>457</td>
</tr>
<tr>
<td>29</td>
<td>Fluorescent Protein Specific Nanotraps to Study Protein–Protein Interactions and Histone-Tail Peptide Binding</td>
<td>Garwin Pichler, Heinrich Leonhardt, and Ulrich Rothbauer</td>
<td>475</td>
</tr>
<tr>
<td>30</td>
<td>Site-Specific Labeling of His-Tagged Nanobodies with 99mTc: A Practical Guide</td>
<td>Catarina Xavier, Nick Devoogdt, Sophie Hernot, Ilse Vaneycken, Matthias D’Huyvetter, Jens De VOS, Sam Massa, Tony Laboutte, and Vicky Caveliers</td>
<td>485</td>
</tr>
<tr>
<td>31</td>
<td>Nanobody-Based Chromatin Immunoprecipitation</td>
<td>Trong Nguyen Duc, Gholamreza Hassanzadeh-Ghassabeh, Dirk Saerens, Eveline Peeters, Daniel Charlier, and Serge Muyldermans</td>
<td>491</td>
</tr>
<tr>
<td>32</td>
<td>User-Friendly Expression Plasmids Enable the Fusion of VHHs to Application-Specific Tags</td>
<td>Ario de Marco</td>
<td>507</td>
</tr>
<tr>
<td>33</td>
<td>Application of Single-Domain Antibodies in Tumor Histochemistry</td>
<td>Kien T. Maik and C. Roger MacKenzie</td>
<td>523</td>
</tr>
<tr>
<td></td>
<td>PART VI CASE STUDIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Nanobodies as Structural Probes of Protein Misfolding and Fibril Formation</td>
<td>Erwin De Genst and Christopher M. Dobson</td>
<td>533</td>
</tr>
<tr>
<td>35</td>
<td>Molecular Imaging Using Nanobodies: A Case Study</td>
<td>Nick Devoogdt, Catarina Xavier, Sophie Hernot, Ilse Vaneycken, Matthias D’Huyvetter, Jens De VOS, Sam Massa, Patrick De Baetselier, Vicky Caveliers, and Tony Laboutte</td>
<td>559</td>
</tr>
<tr>
<td>36</td>
<td>Case Study on Live Cell Apoptosis-Assay Using Lamin-Chromobody Cell-Lines for High-Content Analysis</td>
<td>Kourosb Zolghadr, Jacqueline Gregor, Heinrich Leonhardt, and Ulrich Rothbauer</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
<td>577</td>
</tr>
</tbody>
</table>
Contributors

VISHAL AGRAWAL • Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada

MEHDI ARBABI-GHAHRoudi • Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada; School of Environmental Sciences, University of Guelph, Guelph, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada

PATRICK DE BAEtsELIER • Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium

TOYA NATH BARAL • Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada

LOUIS BISSON • Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada

SYLVEE DE BUCK • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

NICO CAllewaERT • Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBe), Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium

VICKY CAVELIERS • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of nuclear Medicine, UZ Brussel, Brussels, Belgium

DANIEL CHARLIer • Erfelijkheidsele en Microbiologie, Vrije Universiteit Brussel, Brussels, Belgium

DANIEL CHRIST • Garvan Institute of Medical Research, Darlinghurst/Sydney, NSW, Australia

ANN DEPICKER • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

NICK DEvoogDT • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium

MATThIAs D’HUYVETTER • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium

WEN DING • Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada

CHRISTOPHER M. DOBSON • Department of Chemistry, University of Cambridge, Cambridge, UK

EDWARD DOLK • QVQ, Utrecht, The Netherlands
TRONG NGUYEN DUC • Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Brussels, Belgium

KIP DUDGEON • Garvan Institute of Medical Research, Darlinghurst/Sydney, NSW, Australia

YVES DUROCHER • Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada

KRISTOFFER FAMM • Centre for Protein Engineering, MRC Centre, Cambridge, UK; GlaxoSmithKline, Middlesex, UK

ERWIN DE GENST • Department of Chemistry, University of Cambridge, Cambridge, UK

ANDREA GORLANI • Department of Biomolecular Imaging, Utrecht University, Utrecht, The Netherlands; Biomolecular Imaging, Faculty of Science, Department of Biology, Universiteit Utrecht, Utrecht, The Netherlands

JACQUELINE GREGOR • ChromoTek GmbH, Martinsried, Germany

ANDREW GRIFFITHS • Laboratoire de Biologie Chimique, Institut de Science et d’Ingénierie Supramoléculaires, Université Louis Pasteur, Strasbourg, France

HANS DE HAARD • Cell Biology, Utrecht University, Utrecht, The Netherlands

YOSHIHISA HAGIHARA • National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan

GHOLAMREZA HASSANZADEH-GHASSABEH • Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Brussels, Belgium

SOPHIE HERNOT • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium

LUCY J. HOLT • Biopharm R&D, GlaxoSmithKline, Cambridge, UK

GREG HUSSACK • Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada

OLGA IGNATOVICH • Biopharm R&D, GlaxoSmithKline, Cambridge, UK

LAURENT JESPERS • Biopharm R&D, GlaxoSmithKline, Cambridge, UK

DAE YOUNG KIM • Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada

RINSE KLOOSTER • Department of Human and Clinical Genetics, Medical Genetics Center, Leiden University Medical Center, Leiden, The Netherlands

AKIKO KOIDE • Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA

SHOHEI KOIDE • Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA

JYOTHI KUMARAN • Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada; School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

TOON LAEREMANS • Structural Biology Brussels, VIB/VUB, Brussels, Belgium

TONY LAHOUTTE • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
ELS VAN LERBERGE • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

HEINRICH LEONHARDT • CIPS, Center for Integrated Protein Science at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany

SILVÈRE M. VAN DER MAAREL • Department of Human and Clinical Genetics, Medical Genetics Center, Leiden University Medical Center, Leiden, The Netherlands

C. ROGER MACKENZIE • Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada; School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

KIJN T. MAIK • Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada

ARIO DE MARCO • University of Nova Gorica (UNG), Rožna Dolina, Nova Gorica, Slovenia

SAM MASSA • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium

THOMAS DE MEYER • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

YANAL MURAD • Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada

SERGE MUYLDERMANS • Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium

JONAH NOLF • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

STEWART D. NUTTALL • CSIRO Materials Science and Engineering, Parkville, VIC, Australia

AURELIEN OLICHON • INSERM U563—Institut Claudius Regaud, Toulouse, France

ANNELIES DE PAEPE • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

EVELINE PEETERS • Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, Brussels, Belgium

MIREILLE PELLIS • Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium

SYLVIE PERRET • Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
GARWIN PICHLER • CIPS, Center for Integrated Protein Science at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany

ROBIN PIRON • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

TERENCE H. RABBITS • Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK

ULRICH ROTHBAUER • Natural and Medical Science Institute at the University of Tuebingen, University of Tuebingen, Reutlingen, Germany; ChromoTek GmbH, Planegg-Martinsried, Germany

ROMAIN ROUET • Garvan Institute of Medical Research, Darlinghurst/Sydney, NSW, Australia

KIM S. RUTGERS • Department of Human and Clinical Genetics, Medical Genetics Center, Leiden University Medical Center, Leiden, The Netherlands

LUCY RUTTEN • Biomolecular Imaging, Department of Biology, Utrecht University, Utrecht, The Netherlands

DANIEL RYCROFT • Biopharm R&D, GlaxoSmithKline, Cambridge, UK

DIRK SAERENS • Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium

KRISTOF DE SCHUTTER • Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium; Ghent University, Ghent (Zwijnaarde), Belgium

ARMIN SEPP • Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline Plc, Cambridge, UK

SACHDEV S. SIDHU • Terrence Donnelly Center for Cellular and Biomolecular Research and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada

IGOR SLIVAC • Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada

GILLES ST-LAURENT • Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada

TOMOYUKI TANAKA • Leeds Institute of Molecular Medicine, St. James’s University Hospital, University of Leeds, Leeds, UK

JAMSHID TANHA • Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada; School of Environmental Sciences, University of Guelph, Guelph, ON, Canada

JEAN-LUC TEILLAUD • Cordeliers Research Center/INSERM U.872, Paris Descartes University and Pierre et Marie Curie University (UPMC), Paris, France

IAN M. TOMLINSON • Biopharm R&D, GlaxoSmithKline, Cambridge, UK
RAFFI TONIKIAN • Terrence Donnelly Center for Cellular and Biomolecular Research and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada; Department of Protein Engineering, Biogen Idec, Cambridge, MA, USA

ILSE VAN EYCKEN • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium

PETER VERHEESEN • Structural Biology Brussels, VIB/VUB, Brussels, Belgium

THEO VERRIPS • QVQ, Utrecht, The Netherlands

CÉCILE VINCKE • Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium

VIKRAM VIRDI • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

JENS DE VOS • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Molecular and Cellular Interactions, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium

KIRSTEN DE WILDE • Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium

RUUD M.T. DE WILDT • Biopharm R&D, GlaxoSmithKline, Cambridge, UK

CATARINA XAVIER • In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium

JIANGBING ZHANG • Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada

KOUROSH ZOLGHADRI • Natural and Medical Science Institute at the University of Tuebingen, University of Tuebingen, Reutlingen, Germany; ChromoTek GmbH, Martinsried, Germany