Preface

The emerging new field of prenatal gene therapy is based on the rapid scientific and technical advances in fetal medicine, molecular biology, and gene therapy over the last two decades. This novel and still preclinical research subject aims at applying gene therapy during pregnancy for the prevention of human diseases caused by early onset congenital or gestation-related conditions. The present volume summarizes the accumulated scientific knowledge and practical experience over more than 15 years of research by leading scientists in the fields of gene therapy, fetal medicine, and medical ethics. It provides a unique and comprehensive overview of the concept of prenatal gene therapy, its potential target diseases, its advantages and possible adverse effects and of the ethical and societal implications of this approach. This book contains detailed protocols for vector production, for breeding and husbandry of the animal models, for the surgical procedures of gene delivery in large and small animals, and for the methods of gene transfer analysis. The various chapters are introduced by overviews covering the different vector systems, animal models, and analysis methods used in basic research on prenatal gene therapy, and in preparation for human application. Although prenatal disease is the main target of application in this volume, the chapters on vector generation, production, and testing compiled here provide detailed state-of-the-art knowledge useful for other gene therapy projects beyond the scope of fetal medicine.

Written for: Gene therapists, obstetricians, specialists in perinatal medicine, human geneticists, molecular biologists, medical ethicists.

London, UK

Charles Coutelle
Simon N. Waddington
Contents

 Preface .. v
 Contributors ... ix

 1 The Concept of Prenatal Gene Therapy .. 1
 Charles Coutelle and Simon N. Waddington

 2 Candidate Diseases for Prenatal Gene Therapy .. 9
 Anna L. David and Simon N. Waddington

 3 Vector Systems for Prenatal Gene Therapy: Choosing Vectors for Different
 Applications ... 41
 Charles Coutelle and Simon N. Waddington

 4 Vector Systems for Prenatal Gene Therapy: Principles of Adenovirus
 Design and Production ... 55
 Raul Alba, Andrew H. Baker, and Stuart A. Nicklin

 5 Vector Systems for Prenatal Gene Therapy: Principles of Retrovirus
 Vector Design and Production ... 85
 Steven J. Howe and Anil Chandrashekran

 6 Vector Systems for Prenatal Gene Therapy: Principles of Adeno-Associated
 Virus Vector Design and Production .. 109
 Christopher J. Binny and Amit C. Nathwani

 7 Vector Systems for Prenatal Gene Therapy: Principles of Non-viral Vector
 Design and Production ... 133
 Suet Ping Wong, Orestis Argyros, and Richard P. Harbottle

 8 Use of Manipulated Stem Cells for Prenatal Therapy .. 169
 Jessica L. Roybal, Pablo Laje, Jesse D. Vrecenak, and Alan W. Flake

 9 Animal Models for Prenatal Gene Therapy: Choosing the Right Model 183
 Vedanta Mehta, Donald Peebles, and Anna L. David

10 Animal Models for Prenatal Gene Therapy: Rodent Models
 for Prenatal Gene Therapy ... 201
 *Jessica L. Roybal, Masayuki Endo, Suzanne M.K. Buckley,
 Bronwen R. Herbert, Simon N. Waddington, and Alan W. Flake*

11 Animal Models for Prenatal Gene Therapy: The Sheep Model 219
 *Khalil N. Abi-Nader, Michael Boyd, Alan W. Flake, Vedanta Mehta,
 Donald Peebles, and Anna L. David*

 Citra N. Mattar, Arijit Biswas, Mahesh Choolani, and Jerry K.Y. Chan

13 Choice of Surrogate and Physiological Markers for Prenatal Gene Therapy 273
 *Juliette M.K.M. Delhove, Ahad A. Rahim, Tristan R. McKay,
 Simon N. Waddington, and Suzanne M.K. Buckley*
14 Monitoring for Potential Adverse Effects of Prenatal Gene Therapy: Use of Large Animal Models with Relevance to Human Application
Vedanta Mehta, Khalil N. Abi-Nader, David Carr, Jacqueline Wallace, Charles Coutelle, Simon N. Waddington, Donald Peebles, and Anna L. David

15 Monitoring for Potential Adverse Effects of Prenatal Gene Therapy: Mouse Models for Developmental Aberrations and Inadvertent Germ Line Transmission
Charles Coutelle, Simon N. Waddington, and Michael Themis

16 Monitoring for Potential Adverse Effects of Prenatal Gene Therapy: Genotoxicity Analysis In Vitro and on Small Animal Models Ex Vivo and In Vivo
Michael Themis

17 Risks, Benefits and Ethical, Legal, and Societal Considerations for Translation of Prenatal Gene Therapy to Human Application
Charles Coutelle and Richard Ashcroft

Index
Contributors

KHALIL N. ABI-NADER • Prenatal Cell and Gene Therapy Group, EGA Institute for Women’s Health, University College London, London, UK
RAUL ALBA • Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
ORESTIS ARGYROS, PhD • Faculty of Medicine, Molecular and Cellular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
RICHARD ASHCROFT, PhD • School of Law, Queen Mary, University of London, London, UK
ANDREW H. BAKER, PhD • Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
CHRISTOPHER J. BINNY • Department of Haematology, UCL Cancer Institute, London, UK
ARIJIT BISWAS • Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, Singapore, Singapore
MICHAEL BOYD • Biological Services Unit, Royal Veterinary College, London, UK
SUZANNE M.K. BUCKLEY, PhD • Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
DAVID CARR • Prenatal Cell and Gene Therapy Group, EGA Institute for Women’s Health, University College London, London, UK; The Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
ANIL CHANDRASHEKRAN, PhD • Department of Surgery and Cancer, Institute of Reproduction and Development Biology, Hammersmith Hospital, Imperial College London, London, UK
JERRY K.Y. CHAN, MD, PhD • Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, Singapore, Singapore; Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
MAHESH CHOOLANI • Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, Singapore, Singapore
CHARLES COUTELLE, MD, DSc • National Heart and Lung Institute, Molecular and Cellular Medicine Section, Imperial College London, London, UK
ANNA L. DAVID, PhD, MRCOG • Prenatal Cell and Gene Therapy Group, EGA Institute for Women’s Health, University College London, London, UK
JULIETTE M.K.M. DELHOVE • Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
Contributors

MAyuki ENDo • Department of Surgery, Children’s Center for Fetal Research and Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
ALan W. FlAke, MD • Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
RichArD P. Harbottle, PhD • Faculty of Medicine, Molecular and Cellular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
BRonwen R. Herbert • Department of Surgery, Children’s Center for Fetal Research and Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Steven J. Howe, PhD • Molecular Immunology Unit, Wolfson Centre for Gene Therapy, UCL Institute of Child Health, London, UK
Pablo LAje • Department of Surgery, Children’s Center for Fetal Research and Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
CitRa N. Mattar • Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, Singapore, Singapore
Tristan R. McKay • Department of Endocrinology, William Harvey Research Institute, Charterhouse Square London EC1M 6BQ
Vedanta Mehta • Prenatal Cell and Gene Therapy Group, EGA Institute for Women’s Health, University College London, London, UK
Amit C. Nathwani, MD, PhD • Department of Haematology, UCL Cancer Institute, London, UK
Stuart A. Nicklin, BSc (Hons) PhD • Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
Donald Peebles, MD • Prenatal Cell and Gene Therapy Group, EGA Institute for Women’s Health, University College London, London, UK
Ahad A. Rahim, PhD • Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
Jessica L. Roybal • Department of Surgery, Children’s Center for Fetal Research and Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Michael Themis, PhD • Gene Therapy and Genotoxicity Research Group, Brunel University, London, UK
Jesse D. Vrecenak • Department of Surgery, Children’s Center for Fetal Research and Center for Fetal Diagnosis and Treatment, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Simon N. Waddington, PhD • Institute for Women’s Health, Gene Transfer Technology Group, University College London, London, UK
Jacqueline Wallace • The Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
Suet Ping Wong, PhD • Faculty of Medicine, Molecular and Cellular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK