Next-Generation MicroRNA Expression Profiling Technology

Methods and Protocols

Edited by

Jian-Bing Fan

Illumina, Inc., San Diego, CA, USA

Humana Press
Preface

The rapid pace of microRNA (miRNA) research continues to drive the advances of techniques for miRNA expression profiling. However, several unique attributes of miRNAs, including their small size, which limits the choice of probe selection, huge dynamic range of expression level, lack of polyadenylated tails, significant sequence homology among family members, and tendency to cross-hybridize to their mRNA targets with imperfect sequence homology, have made them challenging to quantify. To meet all these challenges, innovative technologies that are more sensitive, specific, quantitative, and that are compatible with a wide range of biospecimens have been developed during the past few years.

In this volume of the Methods in Molecular Biology series, we assembled a broad spectrum of methods and protocols that cover most of the next-generation miRNA expression profiling technologies. Two introductory chapters serve as references for the context of the more specialized chapters that follow. Chapter 1 (Gommans and Berezikov) provides a general overview to the miRNA field, such as miRNA biogenesis and regulation in human development and diseases, and Chapter 2 (Aldridge and Hadfield) provides a summary of most of the widely used miRNA assay technologies as well as insightful cross-platform comparisons.

We also include comprehensive coverage of methodologies that have been developed for miRNA profiling, including (1) quantitative PCR using either a stem-loop RT-PCR method (Chapter 3: Hurley et al.) or a Poly(T) adaptor RT-PCR approach (Chapter 4: Shi et al.), (2) in situ hybridization (Chapter 5: Nielsen), and (3) microarray analysis with a variety of microarray platforms, such as Agilent (Chapter 6: Andrade and Fulmer-Smentek), Illumina (Chapter 7: Chen et al.), Affymetrix (Chapter 8: Dee and Getts), Luminex (Chapter 9: Sorensen), Febit (Chapter 10: Beier et al.), and LC Sciences (Chapter 11: Zhou et al.). All these techniques allow high-throughput measurement of well-annotated miRNAs.

The past few years have witnessed the rapid development of next-generation sequencing technology and fast adoption of the technology for miRNA research. This area is covered by several excellent chapters that involve the Illumina miRNA-Seq platform (Chapter 12: Luo), Roche 454 GS FLX technology (Chapter 13: Soares et al.), Life Technologies SOLiD platform (Chapter 14: Linsen and Cuppen), and Helicos single-molecule sequencing technology (Chapter 15: Kapranov et al.). The sequencing approach provides several technical advantages over microarrays. It offers (1) more comprehensive coverage and de novo discovery potential, (2) single base specificity, and (3) better detection sensitivity and dynamic range.

In addition to hands-on “wet-lab” protocols, this volume also covers the use of miRNA databases, which deal with the annotation and discovery of miRNAs and other noncoding RNAs (Chapter 16: Yang and Qu), and the function of miRNAs in human diseases and biological processes (Chapter 17: Ruepp et al.), as well as data normalization methods (Chapter 18: D’haene et al.), next-generation sequencing data analysis (Chapter 19: Gunaratne et al.), and integrated miRNA expression analysis and target prediction (Chapter 20: Ritchie and Rasko).
Furthermore, specialized applications, such as cancer studies (Chapter 21: Zhong et al.) and miRNA-based noninvasive biomarker development (Chapter 22: Debey-Pascher et al.), are also addressed.

The content within this book is intended for students, researchers, and scientists in the field, at both the beginner and advanced levels, and contains sufficiently detailed protocols, particularly pointers, that will assist with troubleshooting. While each of the methods has some technical limitations, many of them have been used successfully in broad scientific researches. The choice of the method mainly depends on the users' desired application.

Finally, I would like to thank all the authors for their outstanding contributions to this timely developed protocol book. I would also like to thank Dr. Craig April for his assistance with the preparation of the chapters, as well as Professor John Walker, the Methods in Molecular Biology series editor, and David Casey at Humana Press. I truly hope this book will help accelerate the expression analysis of miRNA and expand our understanding of the biological functions of miRNA in different species and human diseases.

San Diego, CA, USA

Jian-Bing Fan
Contents

Preface. ... vi

Contributors. .. ix

1 Controlling miRNA Regulation in Disease 1
 Willemijn M. Gommans and Eugene Berezikov

2 Introduction to miRNA Profiling Technologies and Cross-Platform
 Comparison ... 19
 Sarah Aldridge and James Hadfield

3 Stem-Loop RT-qPCR for MicroRNA Expression Profiling 33
 James Hurley, Doug Roberts, Andrew Bond, David Keys, and Caifu Chen

4 Poly(T) Adaptor RT-PCR .. 53
 Rui Shi, Ying-Husan Sun, Xing-Hai Zhang, and Vincent L. Chiang

5 MicroRNA In Situ Hybridization ... 67
 Boye Schnack Nielsen

6 Agilent MicroRNA Microarray Profiling System 85
 Petula N. D’Andrade and Stephanie Fulmer-Smentek

7 miRNA Expression Profiling Using Illumina Universal BeadChips 103
 Jing Chen, Craig S. April, and Jian-Bing Fan

8 MicroRNA Expression Analysis Using the Affymetrix Platform 117
 Suzanne Dee and Robert C. Getts

9 Individualized miRNA Assay Panels Using Optically Encoded Beads. ... 131
 Keld Sorensen

10 Microfluidic Primer Extension Assay 143
 Markus Beier and Valesca Boisguérin

11 MicroRNA Profiling Using μParaflo Microfluidic Array Technology ... 153
 *Xiaochuan Zhou, Qi Zhu, Christoph Eicken, Nijing Sheng, Xiaolin Zhang,
 Litao Yang, and Xiaolian Gao*

12 MicroRNA Expression Analysis Using the Illumina MicroRNA-Seq Platform ... 183
 Shujun Luo

13 Next-Generation Sequencing of miRNAs with Roche 454 GS-FLX
 Technology: Steps for a Successful Application 189
 Ana Raquel Soares, Patrícia M. Pereira, and Manuel A.S. Santos

14 Methods for Small RNA Preparation for Digital Gene Expression Profiling
 by Next-Generation Sequencing .. 205
 Sam E.V. Linsen and Edwin Cuppen

15 Profiling of Short RNAs Using Helicos Single-Molecule Sequencing. 219
 Philipp Kapranov, Fatih Ozsolak, and Patrice M. Milos
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>deepBase: Annotation and Discovery of MicroRNAs and Other Noncoding RNAs from Deep-Sequencing Data.</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Jian-Hua Yang and Liang-Hu Qu</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PhenomiR: MicroRNAs in Human Diseases and Biological Processes</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Andreas Ruepp, Andreas Kowarsch, and Fabian Theis</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>miRNA Expression Profiling: From Reference Genes to Global Mean Normalization.</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Barbara D’haene, Pieter Mestdagh, Jan Hellemans, and Jo Vandesompele</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>miRNA Data Analysis: Next-Gen Sequencing</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Preethi H. Gunaratne, Cristian Coarfa, Benjamin Soibam, and Arpit Tandon</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Integrated miRNA Expression Analysis and Target Prediction</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>William Ritchie and John E.J. Rasko</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>miRNAs in Human Cancer</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>Xiaomin Zhong, George Coukos, and Lin Zhang</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Blood-Based miRNA Preparation for Noninvasive Biomarker Development</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Svenja Debey-Pascher, Jing Chen, Thorsten Voss, and Andrea Staratschek-Jox</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>339</td>
</tr>
</tbody>
</table>
Contributors

SARAH ALDRIDGE • CRUK Cambridge Research Institute, Cambridge, UK
CRAIG S. APRIL • Illumina, Inc., San Diego, CA, USA
MARKUS BEIER • febit biomed gmbh, Heidelberg, Germany
EUGENE BEREZIKOV • Hubrecht Institute, Utrecht, The Netherlands
VALESCA BOISGUERIN • febit biomed gmbh, Heidelberg, Germany
ANDREW BOND • Life Technologies Corporation, Foster City, CA, USA
CAIFU CHEN • Life Technologies Corporation, Foster City, CA, USA
JING CHEN • Illumina, Inc., San Diego, CA, USA
VINCENT L. CHIANG • Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
CRISTIAN COARFA • Bioinformatics Research Laboratory, Baylor College of Medicine, Houston, TX, USA
GEORGE COUKOS • Department of Obstetrics and Gynecology, Center for Research on Early Detection and Cure of Ovarian Cancer, University of Pennsylvania, Philadelphia, PA, USA
EDWIN CUPPEN • Hubrecht Institute, Utrecht, The Netherlands
PETULA N. D’ANDRADE • Agilent Technologies, Santa Clara, CA, USA
BARBARA D’HAENE • Biogazelle, Zwijnaarde, Belgium
SVENJA DEBEY-PASCHER • Life and Medical Sciences (LIMES), Genomics and Immunoregulation, University of Bonn, Bonn, Germany
SUZANNE DEE • Affymetrix, Santa Clara, CA, USA
CHRISTOPH EICKEN • LC Sciences, LLC, Houston, TX, USA
JIAN-BING FAN • Illumina, Inc., San Diego, CA, USA
STEPHANIE FULMER-SMENTEK • Agilent Technologies, Santa Clara, CA, USA
XIAOLIAN GAO • Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
ROBERT C. GETTS • Genisphere LLC, Hatfield, PA, USA
WILLEMIN M. GOMMANS • Hubrecht Institute, Utrecht, The Netherlands
PREETHI H. GUNARATNE • Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
JAMES HADFIELD • CRUK Cambridge Research Institute, Cambridge, UK
JAN HELLERMANS • Biogazelle, Zwijnaarde, Belgium
JAMES HURLEY • Life Technologies Corporation, Foster City, CA, USA
PHILIPP KAPRANOV • Helicos BioSciences Corporation, Cambridge, MA, USA
DAVID KEYS • Life Technologies Corporation, Foster City, CA, USA
ANDREAS KOWARSCH • Institute for Bioinformatics and Systems Biology (MIPS), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
Contributors

SAM E.V. LINSEN • Hubrecht Institute, Utrecht, The Netherlands
SHUJUN LUO • Illumina, Inc., Hayward, CA, USA
PIETER MESTDAGH • Center for Medical Genetics, Ghent University, Ghent, Belgium
PATRICE M. MILOS • Helicos BioSciences Corporation, Cambridge, MA, USA
BOYE SCHNACK NIELSEN • Exiqon A/S, Diagnostic Product Development, Vedbæk, Denmark
FATIH OZSOLAK • Helicos BioSciences Corporation, Cambridge, MA, USA
PATRÍCIA M. PEREIRA • RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
LIANG-HU QU • Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, P.R. China
JOHN E.J. RASKO • Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Sydney, NSW, Australia
WILLIAM RITCHIE • Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Sydney, NSW, Australia
DOUG ROBERTS • Life Technologies Corporation, Foster City, CA, USA
ANDREAS RUEPP • Institute for Bioinformatics and Systems Biology (MIPS), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
MANUEL A.S. SANTOS • RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
NIJING SHENG • Atactic Technologies Inc., Houston, TX, USA
RUI SHI • Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
ANA RAQUEL SOARES • RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
BENJAMIN SOIBAM • Department of Physics, University of Houston, Houston, TX, USA
KELD SORENSEN • Siemens Healthcare Diagnostics, Flanders, NJ, USA
ANDREA STARSCHTEK-JOX • Life and Medical Sciences (LIMES), Genomics and Immunoregulation, University of Bonn, Bonn, Germany
YING-HUSAN SUN • Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
ARPIT TANDON • Bioinformatics Research Laboratory, Baylor College of Medicine, Houston, TX, USA
FABIAN THEIS • Institute for Bioinformatics and Systems Biology (MIPS), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
JO VANDERDESOMPELE • Center for Medical Genetics, Ghent University, Ghent, Belgium
THORSTEN VOSS • QIAGEN GmbH, Diagnostic Sample Preparation and Stabilization, R&D Department, QIAGEN, Hilden, Germany
JIAN-HUA YANG • Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, P.R. China
LITAO YANG • Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
LIN ZHANG · Department of Obstetrics and Gynecology, Center for Research on Early Detection and Cure of Ovarian Cancer, University of Pennsylvania, Philadelphia, PA, USA

XIAOLIN ZHANG · Atactic Technologies Inc., Houston, TX, USA

XING-HAI ZHANG · Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA

XIAOMIN ZHONG · Department of Obstetrics and Gynecology, Center for Research on Early Detection and Cure of Ovarian Cancer, University of Pennsylvania, Philadelphia, PA, USA

XIAOCHUAN ZHOU · LC Sciences, LLC, Houston, TX, USA

QI ZHU · LC Sciences, LLC, Houston, TX, USA